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Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in
Texas?1 Lorenz (1993)

One establishes the failure of Newtonian determinism by using Newton’s own equa-
tions. The coin-flipping syndrome is pervasive. “Sensitive dependence on initial
conditions” has become a catchword of modern science.2 Smale (1998)

Triggered by mathematical discovery, the Chaos Revolution is a bifurcation event
in the history of the sciences, comprised of sequential paradigm shifts. Perhaps
also a major transformation in world cultural history.3 Abraham (2000)

The term “chaos” was introduced into mathematics by Li and Yorke in 1975 with-
out formally defining what chaos is. Afterwards, various definitions were proposed.
They do not coincide in general and none of them can be considered as the unique
“good” definition of chaos. One may ask “What is chaos then?”4 Ruette (2015)

1 Introduction

In a conceptually-imaginative contribution, Matsuyama [39] provided a model that gen-
erates endogenous growth through the introduction of new varieties chosen from a con-
tinuum of commodities, a technological specification pioneered by Rivera-Batiz-Romer
[49]; also see the subsequent discussion in [16], [14], [60] and [62]. A particularly attrac-
tive feature of the model is its demonstration, under specific parametric restrictions, that
an economy may find itself in a stagnant Solow regime, and a dynamic Romer regime, or
at alternative, exogenously-specified equal intervals of time, in both.5 From a technical
point of view, the model can be represented by the, here so-called, M-map: a piecewise
smooth two-parameter map, one of whose arms is the (monotonically-increasing) inten-
sive form of the Cobb-Douglas function, and the other, a (monotonically-decreasing)
version of the solution to a differential equation involving the logistic map.6 The arms

1See [1, p. 91]. The original is titled “The butterfly effect” and constitutes Appendix One in the
author’s The Essence of Chaos. Seattle: University of Washington Press.

2See [1, p. 8]. The original is from “Finding a horseshoe on the beaches of Rio,” The Mathematical
Intelligencer 20, 39-44.

3See [1, p. 89]. In a section titled “The Chaos Revolution: 1968-1998”, the author gives a list of 23
paradigm shifters that includes only one economist: Richard Goodwin.

4Ruette continues, “It relies generally on the idea of unpredictability or instability, i.e. knowing the
trajectory is not enough to know what happens elsewhere.” The sentiment expressed in these sentences
is part of the folklore of the subject; we cull them from [51, p. iv].

5The adjectives “dynamic and “stagnant” bow to the conventional categorization: in the Solow
regime, the economy is growing through capital accumulation at an exogenous rate of population growth,
and in the Romer regime, through the expansion of product varieties at an endogenously-generated
growth rate.

6See Figure 1. Econometricians will note and appreciate the distinction between the standard logistic
function and the formula for the right arm given in Equation 1 below. The former is given by 1/(a +
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are stitched together at a non-differentiable kink, subsequently referred to as the criti-
cal point of the map. The model is thus of interest for both substantive and technical
reasons.

However, the primary objective of this essay is neither substantive nor technical but
methodological. It is to use results on the M-map to interrogate the following prevailing
conceptions in economic dynamics:

(a) that we have available a rigorous and mathematically-precise definition of what the
noun chaos, and its qualifying adjectives, topological, ergodic and statistical, mean,
and that thereby any chaotic dynamical system can be uniquely categorized and
unambiguously represented;

(b) that the Li-Yorke theorem pertaining to a “scrambled” set of uncountable cardi-
nality exhausts the meaning of topological chaos;7

(c) that results on the existence of cycles are rendered irrelevant if those cycles are
unstable or if the map is “non-generic”;

(d) that the “scrambled” set of a map exhibiting Li-Yorke chaos may be (typically
is) of measure zero, and thereby unobservable, and that in the light of this “un-
observability,” there is nothing more to say about topological chaos;

(e) that the success of experimental mathematics and of high-speed computing renders
“numerical proofs” substitutable for (formal and traditional) mathematical proofs;

(f) that mathematical results pertaining to smooth non-linear maps carry over, more
or less, to smooth maps with kinks or even to linear maps with kinks;

(g) that the notion of a model as an explanation of economic phenomena is epistemo-
logically viable in spite of the (uncountably) many maps with totally diverse and
mutually-exclusive dynamical properties that are embedded in a particular model.

We use technical investigations of the M-map presented below to contest and question
each of these prevailing conceptions that are now conventional in economic science.8

However, a secondary objective of the essay are these technical results themselves.
Correspondingly, we structure the paper in a loop-like cyclical way. We first present these
results in a context totally jettisoned of our methodological preoccupations, and with

b exp(−x)), both a and b positive, but a change-of-variable in the M-map leads to at least one of the
two parameters being negative; see for example [10] and their reference to the text of Johnson-Kotz,
now revised as Johnson-Kotz-Balakrishnan. Also see Robinson’s text [50, p. 2].

7We explain the technical terms referred to in this, and the subsequent, paragraph in Sections 6 and
7 below.

8It is not that one can reductively assert that these conventional understandings are correct or
incorrect, but, as we shall argue in Sections 6 and 7 below, that for the future progress of the subject,
they need to be qualified and nuanced.
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the pioneering analysis of Mitra [42] as the relevant backdrop, single out the M-map
for a deeper analytical treatment. Mitra took Matsuyama’s observation that the M-
map cannot have a 3-period cycle as a point of departure to develop a weaker sufficient
condition for Li-Yorke chaos, one hinging on the relation of the third iterate of the
critical point to its unstable fixed point.9 He applied his sufficient condition to establish
(also furnish numerical values for) the possibility of the M-map being a Li-Yorke chaotic
map. Subsequent work of Mukherji [45], and of Gardini et al. [19], followed in Mitra’s
footsteps not so much as on Li-Yorke chaos, much less on his sufficient condition for it,
but on the stability of 2- and 4-period cycles. They also presented a bifurcation analysis
based on a comprehensive numerical investigation. Yano-Sato-Furukawa [61] carried the
conversation forward by changing the subject to ergodic chaos.

Generalizations of the Li-Yorke criteria parallel to that of Mitra, have been available
in the mathematical literature for quite some time, and the questions this work asks and
answers have not been posed for the M-map: in the light of the generalization of the
Li-Yorke theorem in [46], what about the existence or non-existence of 5- and 7-period
cycles? And in the light of [15], what about any odd-numbered cycle? And finally, in
the light of [35], what about a cycle of order 2n for any natural number n?10 More to the
point, a rigorous mathematical proof of the non-existence of a 3-period cycle, one that
would underpin the motivation for Mitra’s influential sufficient condition, has still not
been offered for a model that is well on its way to becoming an important and canonical
marker for the growth and development as well as the macroeconomic literature.11

Sections 3 to 5 of this paper addresses this deficiency. They show that 3- and
5-period cycles do not exist for any feasible parameter values of the M-map, but cycles
of all other periods do exist for specific identifiable intervals of parameter values. In
particular, they show that one can identify an interval of parameter values for which a 7-
period cycle can exist. All this is executed through a presentation of analytical formulae
for the first four iterates of the M-map. These iterate specifications serve to delineate the
manifold of the 2-dimensional parameter space, and to complement, through additional
geometric and algebraic considerations, the numerical analysis in [19]. In particular, the
second iterate is used in Section 2 to give a complete characterization of all iterates for a
specific parameter value that allows a 2-period oscillation between the Solow and Romer
regimes.12 We observe in passing that it is a little surprising that such iterates have
not been reported in the literature on economic dynamics: they constitute the tertiary
(technical) objective of the paper.13

9To be sure, this is our subjective, and perhaps opinionated reading of [42]; only an individual author
knows his or her motivation.

10The uninitiated reader should note that all these papers involve existence of the relevant cycle, and
that their concern is not with stability.

11For this literature, see [16], [14], [41], [60] and their references.
12As we observe below, this case has especially caught the attention of the growth and development

literature; see [16], [60].
13It is important, given [44], that the reader not give more than the necessary weight to our claim:
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With these technical results in hand, we circle back in Sections 6 and 7 to the
methodological desiderata listed above and connect to the epigraphs that narrativize the
evolution of the chaos story. We try to get some handle on what a chaotic system can
possibly mean, and through it, to get some sense of the interesting ideas that are current
in the mathematical literature on dynamical systems. Section 8 concludes the paper with
some open questions. These sections recount that, even with the limitation to topological
chaos, as opposed to statistical and ergodic chaos, one lands into a veritable chaos of
different definitions. In its entirety, this paper can then be read as a plea that the word
“chaos”, both as a noun and as an adjective, used with some circumspection and not be
over-indulged: it is after all an understanding of the complexity of a dynamical system
that is being sought.

2 The M-map and its Second Iterate

This tripartite section specifies the M-map arising from Matsuyama’s cyclical growth
model, and with the devotion of the second iterate of the M-map and to special case,
begins the analytical argumentation that constitutes the paper.

2.1 The M-map

The basic model is lucidly diagrammed in [39] (also see Figure 1 presented here), and
the algebra of its dynamics is given by

xt = f(xt−1) ≡


fl(xt−1) = Gx

1−1/σ
t−1 0 ≤ xt−1 ≤ 1

fr(xt−1) = Gxt−1

1+θ(xt−1−1) xt−1 > 1,
(1)

where θ ≡ (1 − 1/σ)1−σ, α = 1 − (1/σ), leading to σ > 1 and α ∈ (0, 1). We refer
the reader to the economic interpretation of these parameters already available in the
literature,14 and move on to a transformation of variables whereby the M-map can be
rewritten in terms of the pair (G, β),

f(x) =


fl(x) = Gxα 0 ≤ x ≤ 1

fr(x) = Gβx
β−1+x x > 1,

(2)

where β = 1/θ = α
α

1−α with β in (1/e, 1) and decreasing with α, and 1 < G < (1/β)− 1.
As brought out in [39, 19], a cyclical growth pattern occurs when G ∈ (1, (1/β)− 1) and

[61], and subsequent work in [52, 53, 54, 62], work with the second iterate, and [45] and [19] diagram
numerical snapshots of both the 2nd and 4th iterates. Our point simply is that explicit formulae for these
iterates of the M-map, as are offered below, have not been furnished and used for analytical results.

14In addition to [39] see, for example, [40, 45, 16] and [62, Appendix].
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β < 1/2 (equivalently, α > 1/2). This implies that

f(G) = f 2(1) =
βG2

(β − 1 +G)
≡ τ < 1. (3)

With τ as an important benchmark, we turn to the derivation of the second iterate.

2.2 The Second Iterate of the M-map

Consider the M-map given in Figure 1 ( also in Figure 2) and note how the second
arm dips below unity to take the value τ. Two other benchmarks are the elements x11
and x12 of the set f−1(1), and they are obtained by taking at the vertical determined
by the critical point (1, G), and through the use of the 45-degree line, the resulting
horizontal to intersect with at the unimodal M-map the two points. Thus, we obtain
the four intervals that go towards the determination of the second iterate. We can now
algebraically compute it to be

f 2(x) =



G1+α(x)α
2

if 0 ≤ x ≤ x11 ≡ G−1/α

βG2xα

β−1+Gxα if x11 ≤ x ≤ 1

β2G2x
(β−1)2+(β−1+βG)x

if 1 ≤ x ≤ x12 ≡ 1−β
1−βG

G
(

βGx
β−1+x

)α
if x12 ≤ x ≤ G

(4)

Note that f(x11) = f(x12) = 1, leading to f 2(x11) = f 2(x12) = G, and that f 2(G) = Gτα.
When diagrammed as Figure 1, we note three intersections of the second iterate

with the 45-degree line: the fixed point x̂ of the M-map itself, and a 2-period cycle.
All this substantiates earlier findings: in particular, we reproduce Theorem 6.1 in Yano-
Sato-Furukawa [61] that offers necessary and sufficient conditions for a range of parameter
values under which the M-map has the absolute value of its slope greater than unity.

Proposition 1. The M-map, f : [τ,G]→ [τ,G], is expansive, if and only if

1

α
< G <

1− β
2

[(β + 2) +
√
β2 + 4β]

We refer the reader to [61, 62] for the proofs and additional discussion and return to
expansivity and iterative expansivity of a map in Section 7. We now turn to the case
τ = 1.

We also invite the reader to compare Figure 1 with Figure 3 in [19], but all the
while keeping in mind that we give a global algebraic “picture” as opposed to the local,
numerical pictures available there. We emphasize the care that is needed to decipher the
local numerical pictures: in Figures 3a and 3b in [19], all potential appearances to the
contrary, there is a unique two-period cycle as opposed to a continuum.
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2.3 A Continuum of 2-period Cycles

Mukherji [45] has focused on 2-period cycles, and investigated the special case when
β = 1/(1 + G) as of particular interest. In terms of the notation of this paper, this
translates to the parameter value τ equaling unity, and lead to x12 equaling G, and the
fourth arm of the 2nd-iterate thereby being eliminated. More to the point, we observe
its third arm is the identity map. Routine algebra furnishes the following specialization
of (1).

fr(x) = − Gx

G− (G+ 1)x
and

d logfr(x)

d logx
= −fr(x)

x
. (5)

This yields the implication that once x enters the absorbing interval [1, G], it alternates
between the two points on the right arm of the M-map. Moving on to the specialization
of 2nd-iterate, we obtain

f 2(x) =


((1− β)/β)1+α(x)α

2
if 0 ≤ x ≤ (β/(1− β))1/α,

(1−β)xα
β+xα

if (β/(1− β))1/α ≤ x ≤ 1

x if 1 ≤ x ≤ (β/(1− β))−1

(6)

It is the fact that f 2
r (x) = x and the right arm of the M-map being the square root of

the identity over the interval [1, G] that gives rise to a continuum of two-period cycles
when τ = 1. This is of particular interest in that it allows a complete characterization
of all the higher iterates of the M-map.15

The formulae look formidable, but the basic pattern is clear enough. Over the
interval [1, G], the nth iterate is the identity map for all even integers n, and is the re-
striction of the M-map itself to the same interval for odd n. More generally, the remaining
interval [0, 1], is divided into n intervals with n arms, and the basic observation is that
for each subsequent iteration, f−1 furnishes only one additional point that results in only
the first arm splitting into two. The 5th and 6th iterates pictured in Figure 3 give the
necessary intuition. The first of these has 5 arms over the interval [0, 1], and by virtue
of (5), a continuum of 2-period cycles, with the implication that the original map has
a 10-period cycle. Indeed, a continuum of them as the picture of the 10th-iterate would
establish. More generally, for odd nan nth-iterate exhibiting 2-period cycle has the im-
plication that the 2nth-iterate has a continuum of fixed points, and thereby a continuum
of 2n cycles. Note also that all points are periodic or eventually (not asymptotically)
periodic. In terms of the language used in [39], the Matsuyama system is not chaotic,
and the fact that for the particular value τ = 1 under consideration, it is not difficult to
demonstrate analytically that all cycles have the period length of a power of 2.

15For an exposition of Stefan’s 1977 construction of the square root of a map, see [51, Example 3.22].
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We can now present the general case. On defining xn as

fnl (xn) = 1, or equivalently, xn = G−(1+α+···+α
n−1)/αn , for n = 1, 2, ..., .

we can assert the following.

Proposition 2. For τ = 1, and for k = 1, 2, ... and 1 ≤ ` ≤ k − 1, the even and odd
iterates of the M-map are given by

f2k(x) =



f2kl (x) if 0 ≤ x ≤ x2k−1,

...
...

fr(f2`+1
l (x)) if x2`+1 ≤ x ≤ x2`

f2`l (x) if x2` ≤ x ≤ x2`−1

...
...

fr(fl(x)) if x1 ≤ x ≤ 1

x if 1 ≤ x ≤ G,

f2k+1(x) =



f2k+1
l (x) if 0 ≤ x ≤ x2k,

fr(f2kl (x)) if x2k ≤ x ≤ x2k−1

...
...

f2`+1
l (x) if x2`+1 ≤ x ≤ x2`

fr(f2`l (x)) if x2` ≤ x ≤ x2`−1

...
...

fl(x) if x1 ≤ x ≤ 1

fr(x) if 1 ≤ x ≤ G,

Proof. In light of the earlier observations, the proof follows easily by induction. First, it
is easy to verify that f 2k(·) and f 2k+1(·) are identical to f 2(·) and that f 3(·) when k = 1.
Using the fact that f 2

r (·) is an identity map, we can show that f 2k+1(x) = f(f 2k(x)) and
f 2(k+1)(x) = f(f 2k+1(x)).

We can now move beyond the second iterate.

3 The Non-existence of a 3-period Cycle

This tripartite section presents the third iterate, comments on the antecedent literature
regarding the non-existence claim, and then offers its proof.

3.1 The Third Iterate of the M-map

In the determination of the third iterate, we stay with the basic procedure already
delineated in the determination of the second iterate. Instead of the vertical through
(1, G), as in the determination of the second iterate, we focus on the critical benchmarks
x21, x22 and x23, as shown in Figure 2, and constitutive elements of the set (f 2)−1. Unlike
the case of the tent-map, for example, we do not obtain four points but only three: the
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procedure does not keep doubling the turning points because both arms of the M-map
are not “onto.” Thus, we obtain the seven intervals that go towards the determination
of the third iterate. In any case, the procedure is now transparent; what is of relevance
is that one can, in particular, chart out the turning points of as many iterates as we like,
all on one map.

We present the algebraic specification of third iterate in the Appendix, and turn
the reader’s attention to Figure 2. Note that f 2(x21) = f 2(x22) = f 2(x23) = 1, leading to
f 3(x21) = f 3(x22) = f 3(x23) = G. We also obtain f 3(x11) = τ and f 3(x12) = τ. Finally,
note that f 3(1) = Gτα and f 3(G) = f(Gτα) = ρ, where the new parameter

ρ ≡ βG2τα

β − 1 +Gτα
. (7)

Remaining with Figure 2, we see that the third iterate intersects the 45-degree line only
at the fixed point x̂ of the M-map itself, and the two other fixed points of the second
iterate designating a 2-period cycle, have disappeared. But of course, a rigorous proof of
the non-existence of a 3-period cycle requires argumentation that goes beyond a picture.
It requires a proof that the third iterate intersect the 45-degree line only at one point
for all values in the admissible two-dimensional manifold of parameters, and that such
a proof has not yet been offered in the antecedent literature since Matsuyama presented
his model in 1999.

3.2 The Claim and its Antecedent Literature

The following claim of obvious consequence for an understanding of the M-map and its
attendant complexity is pervasive in the antecedent literature.

Theorem 1. There does not exist a 3-period cycle in the admissible parameter manifold
of the M-map.

In this subsection, we ask whether there exists a formal proof of the above claim in the
literature. We have already referred to Mitra’s sufficient condition for Li-Yorke chaos,
and his taking note of the following seminal footnote in [39].

It is straightforward to show that this system is not chaotic in the sense of Li-York
(sic), by demonstrating the non-existence of period-3 cycles. For this it suffices to
show that Φ3(kc) > kc, · · · Note, however that this does not rule out the possibility
of chaotic trajectories. To rule out such a possibility, one needs to show that all the
cycles have period length of a power of 2, a property that is difficult to demonstrate
analytically.16

16See [39, Footnote 8]. The footnote is an important marker of the professional understanding of
dynamical systems at the time. It continues, “Another difficulty is that the Schwartzian derivative
of the map, Φ, is not negative, which means, among other things, that the iteration of the critical
point, Φ′(kc), may fail to detect stable cycles, even if they exist.” Stability of the cycles is not our (or
Li-Yorke’s) concern in this essay, at least until Section 7.
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The point is that the system is indeed chaotic in the sense of Li-Yorke, and that the
(rather obvious) reason why the terse remarks in the footnote do not constitute a proof
is simply that the Li-Yorke theorem requires that there exist a 3-period cycle starting
from anywhere, and not necessarily one including the kink. It is this reason that makes
Mitra’s sufficient condition for Li-Yorke chaos all the more relevant for the M-map. As
far as the literature since [39] and [42] is concerned, there is no mention of 3-period
cycles in [45] except for a general remark on Li-Yorke chaotic maps; see [45, Footnote
10]. In their section on “chaotic intervals”, [19, Section 2.3], the authors write, “Indeed
as we see in Figure 2, it is also correct to say that cycles of period three cannot exist.”
However, in reference to their Figure 2, we read:

The rigorous proof of the bifurcations occurring in the map [is] not easy, because
of the complex analytical expressions. However, a numerical proof can first be
given.17

The challenge posed by the M-map is that it is non-linear, and plane geometry can fool
the eye: in Figures 7a and 7b below, there is clearly a 3- and 5-period cycle starting
from the critical point. One simply has to choose the parameters (β,G) properly, but as
we see from Figure 7c, and rigorously from the theorem (and its proof) to follow, such
parameters do not exist!

Indeed, since numerical proofs, by necessity, have to approximate smooth segments
by piecewise linear ones, we depict a piecewise-linear map in the left panel of Figure 4.
This map has the main qualitative features of the M-map in that the left arm is (weakly)
concave and the right arm is convex. Although f 3(1) > 1, and there is no 3-period cycle
starting from the critical point, it can be easily seen that there exist two 3-period cycles
elsewhere on the map.18

f(x) =


1.1 + 3.9x if x ≤ 1
7.5− 2.5x if x̄ ≥ x > 1

{(2.5x̄− 7.5)/(5− x̄)}(x− 5) if 5 ≥ x ≥ x̄

where x̄ = 2.95. The map and its third iterate is depicted in Figure 4.

3.3 A Proof of the Claim

The point then is that a rigorous analytical proof of the non-existence of a 3-period
cycle is needed. We provide such a proof in the remainder of this section based on
the third iterate of the M-map. Towards this end, we shall also need the inequalities
collected as Lemma 1 below; their proof is relegated to the Appendix and they can

17The authors then discuss their Figure 2 in this context. Indeed, numerical proofs abound in the
subject. In [45, p. 238], the author proves his Claim 8 through his Figure 1. For numerical justifications,
see Footnotes 42 and 44.

18Indeed, one of the 3-period cycles is stable, though stability is not the concern here.
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perhaps be profitably skipped by a reader interested only in the qualitative, rather than
the quantitative, aspects of the M-map.

Lemma 1. For any G > 1, the following inequalities hold:(
(1− β)2 − β2G3

(1− β − βG)G

)1/α

< x11 < τ.

We can now turn to the proof of Theorem 2.

Proof. We begin the proof with the assertion that the interval [τ,G] constitutes an
absorbing interval. Formally, we want to show that for any x > 0, there exists N ∈ N
such that for any n ∈ N with n > N , fn(x) ∈ [τ,G]. First, f([τ,G]) = [τ,G], so if
x ∈ [τ,G], then fn(x) ∈ [τ,G] for any n ∈ N. Second, consider x ∈ (0, τ). Note that
Gxα > Gx. Pick N to be the smallest integer that is greater than (ln τ − lnx)/ lnG.
Then fNl (x) > τ , so fn(x) ∈ [τ,G] for any n ∈ N with n > N . Last, the argument
concerning x ∈ (0, τ) carries through for x > G because f(x) ∈ (0, τ).

Next, we assert that a 3-period cycle, if it exists, must be on the absorbing interval
[τ,G]. First, at least one periodic point is on the left arm of the M-map. If this is not
the case, then according to the 3rd iterate of the M-map (also see the 6th arm in Figure
2), the following equation must admit at least three distinct roots:

x =
β3G3x

(β − 1)3 + [(β − 1)2 + (β − 1)βG+ β2G2]x
.

There is a unique solution to the equation above, which is the fixed point of f , so a
3-period cycle cannot occur entirely on the right arm of the M-map. Second, at most
one point of a 3-period cycle must be on the left arm of the M-map. If this is not the
case, two periodic points on the left arm must occur consecutively in a 3-period cycle.
However, since we know Gτα > 1, which implies Gxα > 1 for any x ∈ [τ, 1], this leads to
a contradiction.

We have now shown that there must be one point on the left arm and two points
on the right arm in a three-period cycle. According to our formula of the third iterate of
the M-map (also see the 3rd arm in Figure 2), this suggests that there exists x̂ ∈ [τ, 1],

β2G3x̂α

(β − 1)2 + (β − 1 + βG)Gx̂α
= x̂.

Since
β2G3xα

(β − 1)2 + (β − 1 + βG)Gxα
> xα iff x >

(
(1− β)2 − β2G3

(1− β − βG)G

)1/α

,
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according to Lemma 1, this implies

β2G3xα

(β − 1)2 + (β − 1 + βG)Gxα
> xα for x ≥ τ,

which further implies that x̂ > x̂α. However, xα > x for x < 1, and we obtain the
contradiction and complete the proof.

It bears emphasis that two of the steps used in the proof presented above are available in
the literature. First, the claim that the interval [τ,G] is an absorbing interval constitutes
Lemma 6.1 in [61].19 Second, the proof relies on Lemma 1 whose proof is relegated to the
Appendix, and where we explicitly note that only one of the inequalities of the lemma
is available as Footnote 8 in [34]. However, the proof presented above relies on both
inequalities.

Next, we move on to the fourth iterate, and to the possibility of a 5-period cycle.

4 The Non-existence of a 5-period Cycle

The fact that the M-map is not complicated enough to have a 3-period cycle anywhere in
its manifold of admissable parameters is a folk-result in the sense that it is well-known,
even if it was not so far proved. What is not well-known, and to the knowledge of the
authors never asked, is whether the M-map is complicated enough to have a 5-period
cycle anywhere in its manifold of admissable parameters. We turn to this question in
this section.

4.1 The Fourth Iterate of the M-map

Consider Figure 5 and the fourth iterate of the M-map. As mentioned in the opening
paragraph of Section 3, the procedure to determine it is by now quite routine. Instead of
the set (f 2)−1(1), we work with (f 3)−1(1) to obtain the five points x3i, i = 1, · · · , 5, and,
in general, the twelve intervals depicted in Figure 5. The qualifier “in general” highlights
the fact that there may be only 11 arms to the fourth iterate depending on the parameter
values. All this is a continuing testament to the fact that unlike the tent-map, one of
the two arms of the M-map is not “onto” the unit interval.20

Again, we spare the reader the detailed algebraic specification of the fourth iterate
by relegating it to the Appendix, and focusing his/her attention on its diagrammatic
representation in Figure 5. We see that the fourth iterate intersects the 45-degree line at

19The authors do not write out the straightforward proof, and we do so only for completeness and for
the reader’s convenience. We also take this opportunity to thank two anonymous referees for seeing the
need to couch our arguments in terms of the absorbing interval.

20In this, the M-map shares a commonality with the check-map studied in, for example, [28, 29, 30].
We shall have a little more to say regarding the latter in the concluding remarks.
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five points: the fixed point x̂ of the M-map itself, the unique 2-period cycle and another
unique 4-period cycle. These findings can be usefully compared with Figures 4 and 5
in [19].21 In looking at Figure 5, note that in line with the iterative procedure we are
following, f 3(x3i) = 1, i = 1, · · · 5, necessarily implies f 4(x3i) = G, i = 1, · · · 5. Note
also that

f 4(x21) = f 4(x22) = f 2(x23) = τ and f 4(x11) = f 4(x12) = Gτα,

that f 4(1) = ρ and that f 4(G) = f(ρ). Finally, note that there exists the 12th arm if and
only if G > x35, or equivalently, τ < x22, which is also equivalent to ρ > 1, and that the
13th arm does not exist because we have already shown that τ > x11.

4.2 The Result and its Proof

The surprise here is that to show the non-existence of a 5-period cycle, we do not need
to compute the fifth iterate and to show that it intersects the 45-degree line only at
one point for all values in the admissible two-dimensional manifold of parameters. The
algebraic specification of the fourth iterate suffices! We begin with a statement of the
second principal claim of the paper.

Theorem 2. There does not exist a 5-period cycle in the admissible parameter manifold
of the M-map.

The proof of the result relies on the following inequalities, and we again relegate
their proofs to the Appendix.

Lemma 2. For any G > 1, the following inequalities hold:

(i) Gτα > x23, (ii) ρ < x12, (iii)

(
(β − 1)4 − β4G5

G(1− β − βG)[(β − 1)2 + β2G2]

)1/α

< x33.

We can now turn to the proof of the Theorem.

Proof. First, a 5-period cycle can only occur over the range [τ,G]. According to Lemma
1, this implies that a fixed point of f 5(·) must be no less than x11. Second, if there is a
five-period cycle, at least one point on the cycle must be on the left arm. This can be
seen by solving the fixed point for the fifth-iterate of the right arm given by

β5G5x

(β − 1)5 + [(β − 1)4 + βG(β − 1)3 + β2G2(β − 1)2 + β3G3(β − 1) + β4G4]x
= x.

21In this comparison, note the fact that there is no continuum of 4-period cycles as analytically
revealed by the algebraic specification of the fourth iterate. We exaggerate this comparison by giving
more curvature to the representation of the iterate in the interval ranges [x22, 1] and [x12, x35]. Also
compare Figure 6 with the stylized Figure 7d below.
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There is a unique fixed point and it coincides with the fixed point of f(·), so it is
impossible to have a five-period cycle with all the points on the right arm of the original
M-map. Hence, for there to be a five-period cycle, there must exist a fixed point of f 5(·)
in [x11, 1].

We first consider the interval [x11, x33]. The fourth iterate on this interval increases
with x, and we have f 4(x11) = Gτα > 1 and f 4(x33) = G. This implies that the fifth
iterate on this interval decreases with x. According to Lemma 2(i), Gτα > x23, so
f 5(x33) = τ > (x23/G)1/α = x33. Therefore, f 5(x) ≥ f 5(x33) > x33 ≥ x for x ∈ [x11, x33].
There is no fixed point of the fifth-iterate on this interval.

Next, consider the interval [x33, x22]. The fourth iterate on this interval decreases
with x, and we have f 4(x33) = G and f 4(x22) = τ < 1. Define x4 ∈ [x33, x22] such that
f 4(x4) = 1. Then the fifth iterate increases with x for x ∈ [x33, x4]. It can be shown that

β4G5xα

(β − 1)4 + [(β − 1)3 + βG(β − 1)2 + β2G2(β − 1) + β3G3]Gxα
> xα

⇐⇒ x >

(
(β − 1)4 − β4G5

G(1− β − βG)[(β − 1)2 + β2G2]

)1/α

.

According to Lemma 2(iii), this implies the inequality holds for x ≥ x33. Moreover,
xα > x for x ≤ x4 < 1. Combining these two inequalities, we have f 5(x) > x for
x ∈ [x33, x4]. The fifth iterate decreases with x for x ∈ [x4, x22]. We have f 5(x) ≥
f 5(x22) = Gτα > 1 > x22 ≥ x. Therefore, there is no fixed point in [x33, x22].

Consider the last interval [x22, 1]. The fourth iterate on this interval increases with
x. There are two possible cases. If f 4(1) = ρ ≤ 1, the fifth arm increases with x on this
interval, so f 5(x) ≥ f 5(x22) > 1 ≥ x. If f 4(1) > 1, the fifth arm first increases and then
decreases with x for x ∈ [x22, 1]. However, as Lemma 2(ii) implies ρ < (1− β)/(1−Gβ)
or equivalently f(ρ) = (Gβρ)/(β − 1 + ρ) > 1, we again have f 5(x) > 1 ≥ x for any
x ∈ [x22, 1]. There is no fixed point in [x22, 1] and the proof is complete.

We invite the reader to compare the global figure, Figure 5, with the corresponding
local and numerical pictures presented in Figures 4 and 5 in [19] and Figure 2 in [45].

5 The Existence of Cycles of 6- and Higher Periods

As emphasized in the introduction, the motivation of this work is to shift the emphasis
from numerical determinations of the existence of “chaos” to an analytical examination
of how rich and complicated are the dynamics that one can associate with the M-map.
We have also been emphasizing that our primary concern is with questions of existence
rather than that of the stability or the genericity of periodic orbits. As such, we ask for
the smallest value of odd n > 5 for which n-period cycles, stable or unstable, exist?
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5.1 A 7-period Cycle

A numerical answer is furnished in the following example that presents a trajectory of a
7-period cycle that includes the critical point (kink) of the M-map.

Example 1. For α = 0.99, there exists G∗ ∈ (1, (1− β)/β) (G∗ ≈ 1.01016) such that a
7-period cycle starts from the critical point of the M-map.

The example is diagrammed in Figure 6. It is also of some interest that we can under-
score our analytical findings regarding the fourth iterate by an example within the same
parametric regime given by α = 0.99.

Example 2. For α = 0.99, there exists G∗∗ ∈ (1, (1− β)/β) (G∗∗ ≈ 1.29886)) such that
a 4-period cycle starts from the critical point of the M-map.

These examples, and especially the first, are of interest in their own right, but we
now use them instrumentally to present a result in the following subsection: it completes
the existence question that we pose in this paper, and can be usefully compared with
Claim 12 and Proposition 1 in [45]. Let us also take this opportunity to draw attention
to the fact that Sharkovsky’s theorem guarantees that in this parametric regime, there
exist cycles of all periods greater than or equal to seven.22

5.2 A General Result

In [30], the authors show that the so-called check-map associated with the so-called RSS
model23 has the versatility that under its various parameter values, it can exhibit topo-
logical chaos and n-period cycles for any n ≥ 1. Its “anything-goes-construction”, herein
referred to as the KP-construction, relies on pull-back trajectories for points starting at
the critical point (kink) of the check-map.24 It is a natural to ask whether that geometry
can be transcribed to the M-map: does the KP-construction work for the M-map? While
referring to [30] for details, we shall answer this question through Figures 7a to 7d that
implement the analogue to the KP-construction for the M-map.

Towards this end, return to Figure 1, and to the absorbing interval (τ,G) used in
the proof of Theorem 2 above. Once a trajectory enters this interval, it remains within
it.25 More to the point, the restriction of the M-map to this interval transforms it by

22See, for example, [30, p. 413] for a discussion of the theorem in the context of the RSS model and
the checkmap.

23The Robinson-Solow-Srinivasan model regarding which there has accumulated a considerable liter-
ature; see for example [29] and their references.

24These pull-back trajectories, and a construction based on them, is surely well-understood and well-
known to workers in dynamical-systems – we use the abbreviation here not to give any mathematical
priority but simply as a mnemonic device that has seen an economic application.

25Indeed, as established in [45], it converges to its unique 2-period cycle for some parameter values,
and does not converge for others.
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interchanging the characteristic signatures of its two arms: its right arm is now “onto”,
and its left arm ends in the interior of the left half of the absorbing square. We can now
simply follow the geometry of [30], and given any n-period trajectory that we desire,
mark off the relevant point on the left hand side of the square to determine where the
left arm should end. Figures 7a and 7b present examples of M-maps exhibiting 3- and 5-
period cycles derived in this manner. Since we have analytically proved the non-existence
of a 3-period and a 5-period cycle in the M-map, something is obviously wrong! And it
is this dissonance that furnishes our first observation: like the check-map, the M-map is
also a two-parameter map, but unlike the former, it has the simultaneity under which
a specification of one parameter limits the range of the other parameter. In short, the
map exhibited in Figures 7a and 7b is not a legitimate M-map (see Figure 7c), but it is
one in Figure 7d. Put differently, and more technically, the two-dimensional parametric
manifold of the M-map is not a rectangle but a more complicated object that merits,
indeed demands, further scrutiny and investigation.

Consider an n-period cycle with its orbit specified in the following way: it starts
from the critical point 1, and, after hitting G and Gτα, it stays on the right arm of the
M-map until it hits the critical point again. Figure 6 illustrates an example of this type
of cycle. Formally, there exists an n-period (n ≥ 3) cycle with this particular orbit if
fn−3r [fl(fr(1))] = 1, or equivalently,

Gτα =

[
1

1 +Gβ − β
+

(
Gβ

β − 1

)n−4
Gβ2(1−G)

(1− β)(1 +Gβ − β)

]−1
≡ ϕn(β,G).

We can now consider a subset of the 2-dimensional parameter space given by

Pn = {(β,G) ∈ (1/e, 1/2)× (1, (1− β)/β) : Gτα = ϕn(β,G)}.

Then Theorems 2 and 3 imply that Pn = ∅ for n = 3, 5. The question then pertains
to higher values of n. We can use Examples 1 and 2 above to present the following
consequence of the intermediate value theorem.

Proposition 3. For n ≥ 3, Pn 6= ∅ for all n 6= 3 and 5.

Proof. For G ∈ (1, (1 − β)/β)), ϕn(β,G) ≡ yn ∈ (y7, y4) for any n ≥ 6 and n 6= 7.
In Examples 1 and 2, we have shown that for α = 0.99, G∗τα = y7 and G∗∗τα = y4.
Therefore, when α = 0.99, n ≥ 6, and n 6= 7, we have yn > y7 = Gτα for G = G∗ and
yn < y4 = Gτα for G = G∗∗. When α is given, both Gτα and yn are continuous in G,
so according to the intermediate value theorem, there exists G ∈ (G∗∗, G∗) such that
yn = Gτα for n ≥ 6 and n 6= 7. According to Theorems 1 and 2, the condition above
cannot hold for n = 3 or 5. This completes our proof.

However useful numerical examples prove to be, they surely need underscoring by
an analytical result. A natural question concerns parameter values under which 7-period
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cycles exists! We answer this question by appealing to the generalization of the Li-Yorke
theorem presented in Li-Misurewicz-Piangiani-Yorke [35], henceforth LMPY, and further
refined by Ruette [51, Proposition 3.34]. We can present

Theorem 3. A sufficient condition for the existence of a 7-period cycle of the M-map
is given by

f 7(1) = f 3(ρ) =
β4G5τα

(β − 1)4 + [(β − 1)3 + βG(β − 1)2 + β2G2(β − 1) + β3G3]Gτα
≤ 1.

Proof. According to the LMPY theorem, there exists a 7-period cycle if f 7(x) ≤ x < f(x)
for some x. In applying this result, we work with x = 1. Since f(1) = G > 1, for a
7-period cycle, we need conditions that guarantee f 7(1) ≤ 1. We have already shown
that f 2(1) = τ < 1 and that f 3(1) = Gτα > 1. The complication arises from the fact
that we require

f 4(1) =
βG2τα

β − 1 +Gτα
= ρ > 1,

when in general it can take values either greater or less than one. We can now assert
that f 5(1) > 1. If not, we would have a 5-period cycle, and a contradiction to Theorem
2 above. We further require f 6(1) ≥ 1. This implies that

f 7(1) =
β4G5τα

(β − 1)4 + [(β − 1)3 + βG(β − 1)2 + β2G2(β − 1) + β3G3]Gτα
.

Thus, as a consolidation of the argumentation, in order to show the existence of a 7-period
cycle, we need to show (i) f 4(1) ≥ 1, (ii) f 6(1) ≥ 1, and (iii) f 7(1) ≤ 1.

Towards this end, we first show (iii) implies (i) and (ii). If f 6(1) ∈ [τ, 1), then
f 7(1) > 1, and we contradict (iii). Now suppose f 4(1) < 1. This implies Gτα >
(1− β)/(1− βG). Furthermore, we are working under a hypothesis that implies that

Gτα ≤ (β − 1)4

β4G4 − (β − 1)3 − (β − 1)2βG− (β − 1)β2G2 − β3G3
.

These two inequalities suggest that

1− β
1− βG

<
(β − 1)4

β4G4 − (β − 1)3 − (β − 1)2βG− (β − 1)β2G2 − β3G3

⇐⇒ z(G) ≡ β2G3 − βG2 + (1− β)G− (1− β)2 < 0.

Now observe that z(1) = 0, and z′(G) = 3β2G2 − 2βG + (1 − β). We can show that
z′(1) > 0 and that z′′(G) > 0. Thus, z′(G) > 0 and that therefore z(G) > 0 for any
G > 1. We have obtained the contradiction that we seek, and completed the proof.

We now conclude this section with

Example 3. For α = 0.99, there exists G = 1.01000 such that the inequality identified
in Theorem 3 holds strictly.
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6 Topological Entropy and Types of Topological Chaos

In this section, we return to the theme of what constitutes chaos and a chaotic dynamical
system? More specifically, what does the existence of a 7-period cycle tell us about the
rich complexity of the dynamics of the M-map?

We begin with the following definition.26

Definition 1. For any n ∈ N ∪ 2∞, a continuous mapping f from the unit interval to
itself, an interval map, is of type n for Sharkovsky’s order if the periods of the periodic
points of f form exactly the set {m ∈ N : m D n}, where the notation {m ∈ N : m D 2∞},
stands for {2k : k ≥ 0}, and D for Sharkovsky’s order with equality.27

We can now state that the M-map, as specified in Equation (2) without any additional re-
strictions on its parameters, is of Sharkovsky’s type 7. This translates into further numer-
ical estimates as a consequence of a result ascribed to Block-Guckenheimer-Misiurewicz-
Young, henceforth BGMY, and reported in [51, Theorem 4.60].

Theorem 4 (BGMY). If an interval map f has a 7-period cycle, then its topological
entropy is bounded below by log λ7 where λ7 is the unique positive root of x7 − 2x5 −
1. Moreover, there exists an interval map with a periodic point of period 7 and whose
topological entropy is equal to log λ7.

It is easy to calculate the unique positive root of the polynomial in Theorem 4 to be
1.4656. This numerical viewpoint allows one to see Theorems 1 and 2 above as assertions
that the topological entropy of the M-map, for any point in its admissable manifold of
parameters, cannot be pushed up to the unique positive root of the polynomial corre-
sponding to a 3-period cycle x3− 2x− 1, and thereby to (1 +

√
5)/2 ≈ 1.6180, or even to

the unique positive root of the polynomial corresponding to a 5-period cycle x5−2x3−1,
and thereby to 1.5129. The question is whether we can go beyond Li-Yorke chaos, and
use the existence of a 7-period cycle and a positive lower bound for the topological en-
tropy for the M-map, to say more? To return to the 7-fold criteria with which we began
the introduction, what is Li-Yorke chaos anyway? Why is it to be privileged? Does it
exhaust the meaning that can be given to chaos, even topological chaos?

In his pioneering contribution of more than fifteen years ago, Mitra had already
shifted the focus to turbulence, and had referred to the Li-Yorke criterion, rather than to
Li-Yorke chaos.28 Using [42, Section 2] as a foothold,29 we turn to the epigraph of this

26The answers that follow are heavily indebted to Ruette’s 2017 exposition.
27This constitutes [51, Definition 3.19], and we refer to her Section 3.3 for additional detail and

discussion; also [38] and [22].
28In [42, Footnote 4], he gives “reason why one should not define topological chaos in terms of an

uncountable scrambled set.”
29See, in particular, Propositions 2.2 and 2.3, and Footnotes 5 and 6, in [42]. Theorem 5 below can

be read as a more up-to-date elaboration of his work.
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essay, and to the conceptions articulated as (a) to (c) of its introduction. Blanchard [4,
p. 25] distinguishes five different types of topological chaos: “Li and Yorke’s, Auslander
and Yorke’s, Devaney’s, sensitivity and positive entropy.” In [5], the focus is on Li-Yorke
pairs, and in [6], on the size of scrambled sets.30 The tripartite nature of chaos in the
sense of Devaney – its transitivity, density of periodic points and sensitivity to initial
conditions – allows additional notions by differing permutations of those conditions.31

Thus, Ruette [51, Remarks 7.5 and 7.12] writes:

A topological dynamical system (X; f) is sometimes called chaotic in the sense of
Auslander-Yorke or chaotic in the sense of Ruelle and Takens if it is transitive and
sensitive to initial conditions, and chaotic in the sense of Wiggins if there exists an
invariant closed set Y ⊂ X such that (Y ; f |Y ) is transitive and sensitive to initial
conditions, and strongly chaotic in the sense of Xiong if Y is not necessarily closed,
and f is topologically mixing, the set of periodic points is dense in Y and their
periods form an infinite set.

For the possibly disoriented reader, we offer the following orientation. It is a port-
manteau theorem that deserves circulation among economists interested in dynamical
systems.

Theorem 5. For an interval map f , the following assertions are equivalent:
(i) the topological entropy of f is positive,
(ii) f has a periodic point whose period is not a power of 2,
(iii) there exists an integer n ≥ 1 such that fn has a strict horseshoe,
(iv) f has a homoclinic point,
(v) f has an eventually homoclinic point,
(vi) there exists an invariant closed set X such that (X; f |X) is chaotic in the sense of

Devaney,
(vii) there exists an infinite invariant closed set X such that (X; f |X) is transitive and

X contains a periodic point,
(viii) there exists a positive integer n and an uncountable fn-invariant set X such that

(X; fn|X) is topologically mixing and the set of periodic points is dense in X,
(ix) there exists a positive integer n and an fn-invariant set X such that (X; fn|X) is

topologically mixing,
(x) there exists a positive integer n and an infinite fn-invariant set X such that (X; fn|X)

is transitive,
(xi) f exhibits distributional chaos of any of the three types, DC1, DC2 and DC3.

30For recent work that interprets the size of the scrambled set in terms of Lebesgue measure, rather
than topological or set-theoretic notions, see [31, 32], but note the typographical error in [32, Section 2,
line 3]. Also see [51, Section 6.1].

31References [55, 58] on how transitivity already implies density and sensitivity for interval maps,
have by now a canonical status. For a comprehensive treatment of transitivity, the interested reader
is referred to [33]; also [2, 24]. The uninitiated reader will find the tutorial [38] to be a useful starting
point.
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Proof. Since the theorem is simply a consolidation of results collected and dispersed in
[51], we present a key to its proof for the interested reader in a way that brings out the
historical evolution of the ideas. This is to say, with names and dates.

For the equivalence of (i) to (ii)-(iii), see Theorem 4.58 in [51] where the equivalence
of (i) and (ii) is referred to as “one of the most striking results in interval dynamics.”32

For the equivalence of (i) and (vi) to (vii), see Theorem 7.3 in [51] where it is ascribed to a
1993 paper of Shihai Li. For the equivalence of (i) and (viii) to (x), see Corollary 7.9 [51]
where it is deduced from two results that are coupled with the equivalence of (i) and (ii)
above, and ascribed to an unpublished 1988 paper of Jin-Cheng Xiong. The equivalence
of (i) to (viii) is ascribed to a 1981 paper of Osikawa-Oono. For the equivalence of (i) to
(xi), see Corollary 6.27 in [51] where it is deduced from two results ascribed to a 1994
paper of Schweizer and Smı́tal.

Theorem 5 is conceptually and terminologically heavy. While a comprehensive exposition
is well beyond the scope of this essay,33 we limit ourselves to seven observations pertaining
to it. First, a Li-Yorke pair is sufficient to characterize Li-Yorke chaos, and that either
is a consequence of positive topological entropy.34 Second, the theorem avoids the term
turbulence in favor of Misiurewicz’ modification of Smale’s notion of a horseshoe for two-
dimensional smooth homeomorphisms: (J1, J2) constitute a strict horseshoe if they are
closed non-degenerate disjoint intervals such that J1 ∪ J2 ⊂ f(Ji) for i = 1, 2. Third, a
homoclinic point is one whose forward orbit “hits” a periodic point in a finite number of
periods, and whose backward orbit converges to it asymptotically.35 Fourth, a transitive
sensitive subsystem, riding on the old and essential ideas of transitivity and sensitivity,
is strictly intermediate between positive entropy and Li-Yorke chaos. Fifth, the former
strictly implies the latter.36 Sixth, topological sequence entropy, though not as old as
transitivity, characterizes Li-Yorke chaos.37 Finally, the existence of a periodic point of
odd period greater than 1 implies (strong) chaos in the sense of Xiong, and is equivalent
to the transitivity of f 2 on an infinite, f -invariant closed subset.38

32In two paragraphs preceding her presentation of the theorem, Ruette charts its evolution from
Sharkovsky through Block, Bowen-Franks, and Misurewicz-Szlenk, to Misurewicz in 1978.

33We refer the economist-reader to the Majumdar-Mitra tutorial [38] as one possible starting point;
its emphases remains up-to-date and surprisingly modern. For topological entropy, see [51, Chapter 4]
and her references.

34The first assertion is due to a Kuchta-Smı́tal in 1987, and the second to Junková-Smı́tal in 1986;
see Theorems 5.33 and 5.17 respectively in [51].

35The forward orbit of an eventually homoclinic point only asymptotically converges to a periodic
point. A good intuitive discussion of homclinicity for smooth maps is available in [11] and in [22], and
for piecewise continuous maps, in [51, Section 4.3]. Block saw the relevance of the idea in a 1978 paper.

36The example that Li-Yorke chaos is strictly weaker has only been shown in 2005 by Ruette; see
Section 7.3.2 and Theorem 7.13 in [51].

37The characterization is a 1991 result of Franzová-Smı́tal; see Theorem 5.39 for the result and Section
5.6 for the definition of topological sequence entropy, both in [51]. Also see [17] for recent work.

38See Theorem 7.7 and Theorem 7.8, both in [51]; also [42] for the importance of the second iterate.
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We conclude this section with the assertion that Theorem 5, and the paragraph
following it, is simply an underscoring of the exciting developments current in topological
chaos.39

7 Ergodic Chaos and Experimental Mathematics

Our approach so far has been determinedly topological and determinedly analytical, and
thereby ignores recent work on the M-map that has moved in the direction of ergodic
chaos and comprehensive numerical experimentation. For completeness, we take a brief
critical note of this work.

Writing in 2011 that “in the existing literature on the Matsuyama model, the extent
of non-linearity has not been fully examined,” Yano et al. [61] appeal to a 1975 theorem
they attribute to Lasota-Yorke-Kowalski-Li (LYKL) to identify a range of parameters
for which the M-map exhibits ergodic chaos, precisely defined. They see their result
“confirming Mukherji’s bifurcation analysis, which establishes a similar result numeri-
cally.”40 In [62], they offer an enlargement of the parametric region identified earlier on
the basis of a notion of iterative expansivity which enables a generalization of the LYKL
theorem; see [52, 53]. This interesting work can also be profitably read through (i) the
statistical viewpoint taken in [9], (ii) recent advances [13, 17, 21] that move the subject
across the very boundary of topological and statistical chaos, and (iii) epistemological
considerations in [59].

Taking the numerical-analytical distinction as a background, we note the 9-point
representation of the dialogue between man and machine presented in [8], part of a
multi-volume reflection on experimental mathematics. The authors emphasize the role
of the computer in determining conjectures that are “worth a full-fledged attempt at
formal proof,” but also the importance of “confirming conjectures by rigorous proof.”
These observations have some direct relevance to the several papers of Gardini et al.
[3, 19, 41, 57], and in the context of the M-map, to the findings in [19] of “growth
through chaotic intervals” and of the border-collision bifurcation. Both initiate important
directions for further investigation, and as such are of seminal rather than definitive
importance.

The first of these pertains to the discussion of 4-period cycles in [19]. The authors
criticize [45] and contest that “transition to chaos may occur via the standard period-
doubling bifurcation sequence, writing about a stable 4-cycle found after the stabilization
of the 4-cycle, which we show not possible (sic). The only stable cycles of the model
are fixed points and 2-cycles.” This is established through a bifurcation diagram, as well

39We have not mentioned, for example, generic and dense chaos [51, Section 6.1] or mean chaos
[25, 18, 21].

40For references to the relevant papers of Lasota-Yorke, Li-Yorke and Kowalski, see [61]. The quota-
tions are taken from the introduction and conclusion of their papers.
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as local and numerical snapshots of the second and fourth iterates.41 This dissonance
between [45] and [19] remains an open question precisely because the non-linearities
of the M-map render explicit numerical values of the variety of bifurcations difficult,
and especially when the numerical procedures are not made explicit.42 Some additional
elaboration of this point may be warranted.

It is well-understood that bifurcations lead to abrupt changes in the stylized rep-
resentation of an iterate and thereby underscore the importance of analytical formulae
pining it down globally in the admissible parameter manifold; see for example [43, 44] for
early statements. Thus, a comparison of Figures 3 with Figure 2 show the disappearance
of the 4th arm of the 2nd-iterate, and in the discussion of the 4th-iterate at the end of
Section 4.2, the emergence and disappearance of the 12th arm is noted. The point is that
five bifurcations are identified in [19]: (i) G = 1, (ii) τ = f2r (1) = 1, (iii) ρ = fr ◦ f` ◦ f2r = 1,
(iv) fr(ρ) = xR and (v) Gτα = x̂, where x̂ is the unstable fixed point 1 + β(G − 1), and xR
is the higher value of the unstable 2-period cycle. The open question is whether this list is
complete: specifically, whether the parametric equation |f ′(xL)f ′(xR)| = 1 does, or does not,
represent another bifurcation to those listed above.43 This goes to the heart of the difference in
the claims of [45] and [19], and given the pronounced non-linearities of the M-map, can hardly
be pinned down solely through numerical experimentation.44

We conclude this section with two final observations concerning [19]. The first concerns
the general and vexatious issue of obtaining results for piecewise smooth maps by approxi-
mating them with smooth maps.45 In particular, this calls for validation of the application of
Proposition 2 in [19], proved only for smooth maps46 to the M-map. The second observation
concerns the border-collision bifurcation at G = 1 discussed in [19, Section 3]. This bifurcation
is established by linearizing a piece-wise continuous map at the point of bifurcation,47 and it
has been so applied to the M-map. This application points to an interesting dialectic in that,

41See the second full paragraph on page 542 in [19] for the quote, Figure 2 for the bifurcation diagram,
Figures 3 for numerical snapshots of the 2nd-iterate, and Figures 4 and 5 for the 4th-iterate.

42This is why our own numerical example at the end of Section 3.2 can hardly be considered decisive
for the point it attempts to make. This is by now well-understood in the literature on numerical analysis;
see [37] for references and further discussion.

43This equation is identified in [45] and represented in the sentence following (4) in [19]. We remind
the reader that ρ(1) > 1 is a necessary and sufficient condition for the 12th arm of the 4th-iterate.

44See Lozi [37]; he concludes, “We have shown ... that it is very difficult to trust in numerical solution
of chaotic dynamical dissipative systems. In some cases one can even proof (sic) that it is never possible
to obtain reliable results.”

45In this context, we can refer to the open question as to whether the result in [32] can be obtained
as a corollary to Mané’s 1985 theorem for smooth maps.

46Specifically, the interesting conjugacy claim and that of positive topological entropy in [19, Propo-
sition 2] is adduced by results in [11] and [20] that pertain to smooth maps rather than to those with
a kink, the signature of the M-map. This issue is reconsidered in [57], but the results now appealed to
are those of Marotto which again require differentiability of the map; see [57] for reference to the 1978
paper of Marotto and its 2005 correction. [20] is justifiably not cited in [57] which limits attention to
non-smooth maps.

47As is well-known, this was pioneered by Nusse-Yorke [47]; see [23] and [48] for earlier application
and subsequent elaboration.
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despite the differences in their parametric manifolds, the M-map and the check-map share
interesting similarities, and that one can be understood better by focusing on the other.48

8 Concluding Methodological Remark

The points this paper makes, and the results it reports, are sharp enough that one need not
go beyond the abstract and the introduction so as to summarize them yet again. Perhaps the
only methodological point that warrants some additional explication is (g) of the introduction.

The epistemological point is a simple one. Since May’s influential 1976 piece in Nature
emphasizing complicated dynamics from simple models, there has been a numerical turn in
that questions of comparative economic dynamics, and therefore of economic dynamics, de-
pend essentially of identification of parametric ranges within which the map does not change
abruptly. This is not true for the earlier literature, both in growth and development as well
as in macroeconomics, in which broad qualitative assumptions such as convexity or super-
modularity sufficed. Iterates are now sure to play an important and obvious part in further
elaborations that discipline ad hoc savings function by optimizing behavior, as for example, in
[40, 14, 27, 56], and by adducing additional stylized facts and temporal specifications stemming
from short- and the long-run. Much remains to be done.

9 Appendix

We begin with the proofs of the lemmata.

Proof of Lemma 1. The second assertion has been proved in [39], and we transcribe the proof
there under our notation here. Define h1(G) ≡ βG2+1/α− (G+β−1), and note that h1(1) = 0,
and h′1(G) = (2 + 1/α)βG1+1/α − 1 > 0 for G > 1, because 2 + 1/α > 3 and β > 1/e > 1/3.
This implies h1(G) > 0 for G > 1, and so τ −x11 = h1(G)/[G1/α(G+β−1)] > 0 for any G > 1.

For the first assertion, it suffices to show that

(1− β)2 − β2G3

(1− β − βG)
< 1⇐⇒ βG− β2G3 − β + β2 < 0.

Define h2(G) = βG− β2G3 − β + β2, and note that h2(1) = 0 and h′2(G) = β − 3β2G2 < 0 for
G > 1. Hence, h2(G) < 0 for any G > 1.

Proof of Lemma 2. Since τ < 1, it suffices to show for (i) that

Gτ =
βG3

β − 1 +G
>

(1− β)2

G2β2 + (1− β − βG)
⇐⇒ βG3(β2G2 + 1−β−βG) > (1−β)2(β− 1 +G).

48The panels of Figure 7 show how far one can get with the KP technique developed for the RSS
model [28] in [30]. This point is even more evident in maps forged by the addition of a third arm to
the M-map, pursued in [41] or those which embed the Matsuyama production structure in an uncertain
environment, as in [14].
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Define h3(G) ≡ βG3(β2G2 + 1− β − βG)− (1− β)2(β − 1 +G). We want to show h3(G) > 0
for G > 1. Since h3(1) = 0, we just need to show

h′3(G) = 5β3G4 − 4β2G3 + 3(1− β)βG2 − (1− β)2 > 0 for G > 1.

Define `(β) ≡ h′3(1) = 5β3 − 4β2 + 3(1 − β)β − (1 − β)2 Simple calculation shows `(1/e) ≈
0.006 > 0, and `′(β) = 15β2−16β+ 5 > 0 for β ∈ (1/e, 1/2), so h′3(1) > 0. Consider the second
derivative h′′3(G) = 20β3G3 − 12β2G2 + 6(1 − β)βG = 2βG[10β2G2 − 6βG + 3(1 − β)]. It is
straightforward to show that h4(G) ≡ 10β2G2 − 6βG+ 3(1− β) is an increasing function of G
and h4(1) > 0, so h′′3(G) > 0. This implies h′3(G) > 0 for G > 1.

For (ii), we want to show explicitly that

τα >
(1− β)2

(1− β)G− (1− βG)βG2
or that τ >

(1− β)2

(1− β)G− (1− βG)βG2

since τ < 1. This reduces to the case to (i) above.
For (iii), rearranging the inequality, we want to show

(β − 1)4 − β4G5

(1− β − βG)[(β − 1)2 + β2G2]
<

(1− β)2

β2G2 + (1− β − βG)
,

or equivalently,

(β − 1)4β2G2 − β6G7 − (1− β − βG)β4G5 < (1− β − βG)(1− β)2β2G2.

This inequality can be further simplified to βG3(β2G2 + 1 − β − βG) > (1 − β)2(G + β − 1),
which has been established above.

The third iterate of f(·) is given by

f3(x) =



G1+α+α2
(x)α

3
if 0 ≤ x ≤ x21 ≡ G−(α+1)/α2

,

βG2+αxα
2

β−1+Gα+1xα2
if x21 ≤ x ≤ x11

β2G3xα

(β−1)2+(β−1+βG)Gxα
if x11 ≤ x ≤ x22 ≡

(
1−β

G−βG2

)1/α
G
(

βG2xα

β−1+Gxα
)α

if x22 ≤ x ≤ 1

G
(

β2G2x
(β−1)2+(β−1+βG)x

)α
if 1 ≤ x ≤ x23 ≡ (1−β)2

β2G2+(1−β−βG)

β3G3x
(β−1)3+[(β−1)2+(β−1)βG+β2G2]x

if x23 ≤ x ≤ x12

β1+αG2+αxα

(β−1)(β−1+x)α+βαG1+αxα
if x12 ≤ x ≤ G
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Next, the fourth f4(·) iterate of f(·) is given by

f4(x) =



G1+α+α2+α3
(x)α

4
if 0 ≤ x ≤ x31 ≡ G−(α

2+α+1)/α3
,

βGα
2+α+2xα

3

β−1+Gα2+α+1xα
3 if x31 ≤ x ≤ x21

β2Gα+3xα
2

(β−1)2+(β−1+βG)Gα+1xα2
if x21 ≤ x ≤ x32 ≡

(
1−β

(1−βG)Gα+1

)1/α2

G

(
βGα+2xα

2

β−1+Gα+1xα2

)α
if x32 ≤ x ≤ x11

G
(

β2G3xα

(β−1)2+(β−1+βG)Gxα

)α
if x11 ≤ x ≤ x33 ≡

(
(1−β)2

β2G3+(1−β−βG)G

)1/α
β3G4xα

(β−1)3+[(β−1)2+(β−1)βG+β2G2]Gxα
if x33 ≤ x ≤ x22

β1+αG2+2αxα
2

(β−1)(β−1+Gxα)α+βαG1+2αxα2
if x22 ≤ x ≤ 1

β1+2αG2+2αxα

(β−1)[(β−1)2+(βG+β−1)x]α+β2αG1+2αxα
if 1 ≤ x ≤ x23

β4G4x
(β−1)4+[(β−1)3+βG(β−1)2+β2G2(β−1)+β3G3]x

if x23 ≤ x ≤ x34 ≡ (1−β)3
(1−β)2−β3G3−(1−β−βG)βG

G
(

β3G3x
(β−1)3+[(β−1)2+(β−1)βG+β2G2]x

)α
if x34 ≤ x ≤ x12

G
(

β1+αG2+αxα

(β−1)(β−1+x)α+βαG1+αxα

)α
if x12 ≤ x ≤ min

{
G, x35 ≡ (1−β)x22

x22−βG

}
β2+αG3+αxα

(β−1)2(β−1+x)α+(β−1+βG)βαG1+αxα
if x35 ≤ x ≤ G and x35 < G
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[21] Glendinning, P., Jäger, T. H. and Keller, G., 2006, How chaotic are strange non-chaotic
attractors? Nonlinearity 19, 2005-2022

[22] Grandmont, J-M., 2008, Nonlinear difference equations, bifurcations and chaos: An intro-
duction. Research in Economics 62, 122-177.

[23] Hommes, C. H. and Nusse, H., 1991, Period three to period two bifurcations for piecewise
linear models. Journal of Economics 54, 157-191.

[24] Huang, W., Khilko, D., Kolyada, S. and Zhang, G., 2016, Dynamical compactness and
sensitivity. Journal of Differential Equations 260, 6800-6827

[25] Huang, W., Li, J. and Ye, X, 2014, Stable sets and mean Li-Yorke chaos in positive entropy
systems, Journal of Functional Analysis 266, 3377-3394.

[26] Huang, W. and Ye, X, 2002, Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos,
Topology and its Applications 117, 259-272.

[27] Kennedy, J. and Stockman, D. R., 2008, Chaotic equilibria in models with backward
dynamics, Journal of Economic Dynamics & Control 32, 939-955.

[28] Khan, M. Ali and Mitra, T., 2005, On topological chaos in the Robinson-Solow-Srinivasan
model. Economic Letters 88, 127-133.

[29] Khan, M. Ali and Mitra, T., 2013, Optimal growth in a two-sector RSS model with
discounting: A further geometric investigation, Advances in Mathematical Economics 17,
1-33.

[30] Khan, M. Ali and Piazza, A., 2011, Optimal cyclicity and chaos in the 2-sector RSS
model: An anything-goes construction. Journal of Economic Behavior & Organization
80, 397-417.

[31] Khan, M. Ali and Rajan, A. V., 2016, On scrambled sets of arbitrary positive Lebesgue
measure of piecewise linear interval maps, Johns Hopkins University, mimeo.

27

https://arxiv.org/pdf/1402.7327.pdf
https://arxiv.org/pdf/1512.03294.pdf


[32] Khan, M. Ali and Rajan, A. V., 2017, On the eventual periodicity of piecewise linear
chaotic maps Bulletin of the Australian Mathematical Society, February 17, 2017, online.

[33] Kolyada, S. and Snoha, L, 1997, Some aspects of transitivity – A Survey, Grazer Mathe-
matische Berichte 334, 3-35.

[34] Kwietniak, D. and Oprocha, P., 2012, A note on the average shadowing property for
expansive maps. Topology and its Applications 159, 19-27.

[35] Li, T., Misiurewicz, M., Pianigiani, G. and Yorke, J. A., 1982, Odd chaos. Physics Letters
87, 271-273.

[36] Li, T. and Yorke, J. A., 1975, Period three implies chaos. American Mathematics Monthly
82, 985-992.

[37] Lozi, R., 2013, Can we trust in numerical computations of chaotic solutions of dynam-
ical systems? In Letelier, C. and Gilmore, R. (Eds), Topology and Dynamics of Chaos.
Singapore: World Scientific.

[38] Majumdar, M. and Mitra, T., 2000, Dynamical systems: A tutorial. In Majumdar, M.,
Mitra, T. and Nishimura, K., (Eds.), Optimization and Chaos. New York: Springer.

[39] Matsuyama, K., 1999, Growing through cycles. Econometrica 67, 335-347.

[40] Matsuyama, K., 2001, Growing through cycles in an infinitely lived agent economy. Journal
of Economic Theory 100, 220-234.

[41] Matsuyama, K., Sushko I. and Gardini, L., 2016, Revisiting the model of credit cycles
with good and bad projects. Journal of Economic Theory 163, 525-556.

[42] Mitra, T., 2001, A sufficient condition for topological chaos with an application to a model
of endogenous growth. Journal of Economic Theory 96, 133-152.

[43] Mitra, T. and Nishimura, 2001, Introduction to intertemporal equilibrium theory: inde-
terminacy, bifurcations and stability. Journal of Economic Theory 96, 1-12.

[44] Mitra, T. and Nishimura, 2001, Discounting and long-run behavior: global bifurcation
analysis of a family of dynamical systems. Journal of Economic Theory 96, 256-293.

[45] Mukherji, A., 2005, Robust cyclical growth. International Journal of Economic Theory 1,
233-246.

[46] Nathanson, M. B., 1977, Permutations, periodicity, and chaos. Journal of Combinatorial
Theory, 22, 61-68.

[47] Nusse, H. E. and Yorke, J. A., 1992, Border-collision bifurcations including “period two to
period three” for piecewise smooth systems. Physica D. Nonlinear Phenomena 57, 39-57.

[48] Nusse, H. E. and Yorke, J. A., 1995, Border-collision bifurcations for piecewise smooth
one-dimensional map. International Journal of Bifurcations and Chaos 5, 189-207.

28



[49] Rivera-Batiz, L. A. and Romer, P. M., 1991, Economic integration and endogenous growth.
The Quarterly Journal of Economics 106, 531-555.

[50] Robinson, C., 1995, Dynamical Systems: Stability, Symbolic Dynamics and Chaos. Boca
Raton: CRC Press.

[51] Ruette, S., 2017, Chaos for continuous interval maps: a survey of relationship between the
various kinds of chaos, Memoirs of the American Mathematical Society, available online
as https://www.math.u-psud.fr/ ruette/articles/chaos-int.pdf.

[52] Sato, K., and Yano, M., 2012, An iteratively expansive unimodal map is strong ergodic
chaos, Kyoto University mimeo.

[53] Sato, K., and Yano, M., 2012, A simple condition for uniqueness of the absolutely con-
tinuous ergodic measure and its application to economic models, American Institute of
Physics Conference Proceedings 1479, Issue 1.

[54] Sato, K. and Yano, M., 2013, Optimal ergodic chaos under slow capital depreciation,
International Journal of Economic Theory 9, 57-67.

[55] Silverman, S., 1992, On maps with dense orbits and the definition of chaos, Rocky Moun-
tain Journal of Mathematics 22, 353-375.

[56] Stockman, D. R., 2010, Balanced-budget rules: chaos and deterministic sunspots, Journal
of Economic Theory 145, 1060-1085.

[57] Sushko, I., Avrutin, V. and Gardini, L., 2016, Nonsmooth one-dimensional maps: some
basic concepts and definitions, Journal of Difference Equations and Applications 22, 1816-
1870.

[58] Vellekoop, M. and and Berglund, R., 1994, On intervals, transitivity = chaos. The Amer-
ican Mathematics Monthly 101, 353-355.

[59] Werndl, C., 2009, What are the new implications of chaos for unpredictability? British
Journal for the Philosophy of Science 60, 195-220.

[60] Yano, M. and Furukawa, Y., 2013, Chaotic industrial revolution cycles and intellectual
property protection in an endogenous-exogenous growth model, Discussion Paper No.
2013-11, available online.

[61] Yano, M., Sato, K. and Furukawa, Y., 2011, Observability of chaotic economic dynamics
in the Matsuyama Model. In Dastidar, K. G., Mukhopadhyay, H. and Sinha, U. B., (Eds),
Dimensions of Economic Theory and Policy. New Delhi: Oxford University Press.

[62] Yano, M., Sato, K. and Furukawa, Y., 2013, Ergodically chaotic growth in the Matsuyama
model, Kyoto University, mimeo.

29

https://www.math.u-psud.fr/~ruette/articles/chaos-int.pdf


10 G

τ

τ

G

Gτα

.

x12x11 x^

.. . .

. .. .

Figure 1: The Second Iterate of the M-map for τ < 1
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Figure 2: The Third Iterate of the M-map for τ < 1
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Figure 3: The Fifth and Sixth Iterates of the M-map for τ = 1
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Figure 5: The Fourth Iterate of the M-map for τ < 1 and ρ < 1
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(7a) Potential Existence of a 3-Period Cycle (7b) Potential Existence of a 5-Period Cycle

(7c) Non-Existence of a 3-Period Cycle (7d) Existence of a 7-period Cycle

Figure 7: KP-construction for the M-map
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