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a b s t r a c t

Recent work of Gardini et al. (2008), building on earlier work of Mitra (2001) and Mukherji (2005),
considers the so-called M-map that generates a dynamical system underlying Matsuyama’s (1999)
endogenous growth model. We offer proofs of the fact that there do not exist 3- or 5-period cycles in
the M-map, and an example (a numerical proof) of the existence of a 7-period cycle. We use the latter,
and a construction in Khan and Piazza (2011), to identify a range of parameter values of the M-map that
guarantee the existence of cycles of all periods, except 3 and 5. Our argumentation relies on, and reports,
the first four iterations of the M-map that may have independent interest.

© 2017 Elsevier B.V. All rights reserved.

The term ‘‘chaos’’ was introduced into mathematics by Li and
Yorke in 1975 without formally defining what chaos is. After-
wards, various definitions were proposed. They do not coincide
in general and none of them can be considered as the unique
‘‘good’’ definition of chaos. Onemay ask ‘‘What is chaos then?’’1

Ruette (2017)
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1 Ruette continues, ‘‘It relies generally on the idea of unpredictability or insta-

bility, i.e. knowing the trajectory is not enough to know what happens elsewhere.’’
The sentiment expressed in these sentences is part of the folklore of the subject; we
cull them from Ruette (2017, p. iv).

1. Introduction

In a conceptually-imaginative contribution, Matsuyama (1999)
provided a model that generates endogenous growth through the
introduction of new varieties chosen from a continuum of com-
modities, a technological specification pioneered by Rivera-Batiz
and Romer (1991); also see the subsequent discussion in Gancia
and Zilibotti (2005), Dudek (2010), Yano and Furukawa (2013) and
Yano et al. (2013). A particularly attractive feature of the model
is its demonstration, under specific parametric restrictions, that
an economy may find itself in a stagnant Solow regime, and a
dynamic Romer regime, or at alternative, exogenously-specified
equal intervals of time, in both.2 From a technical point of view,
the model can be represented by the, here so-called, M-map: a
piecewise smooth two-parameter map, one of whose arms is the
(monotonically-increasing) intensive form of the Cobb–Douglas
function, and the other, a (monotonically-decreasing) version
of the solution to a differential equation involving the logistic
map.3 The arms are stitched together at a non-differentiable kink,

2 The adjectives ‘‘dynamic and ‘‘stagnant’’ bow to the conventional categoriza-
tion: in the Solow regime, the economy is growing through capital accumulation
at an exogenous rate of population growth, and in the Romer regime, through the
expansion of product varieties at an endogenously-generated growth rate.
3 See Fig. 1. Econometricians will note and appreciate the distinction between

the standard logistic function and the formula for the right arm given in Eq. (1). The
former is given by 1/(a+b exp(−x)), both a and b positive, but a change-of-variable
in the M-map leads to at least one of the two parameters being negative; see for
example deCani and Stine (1986) and their reference to the text of Johnson–Kotz,
now revised as Johnson–Kotz–Balakrishnan. Also see Robinson’s text (Robinson,
1995 p. 2).
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Fig. 1. The second iterate of the M-map for τ < 1.

subsequently referred to as the critical point of themap. Themodel
is thus of interest for both substantive and technical reasons.

The primary objective of the essay is technical. We present our
technical results with the pioneering analysis of Mitra (2001) as
the relevant backdrop, and single out the M-map for a deeper ana-
lytical treatment. Mitra took Matsuyama’s observation that the M-
map cannot have a 3-period cycle as a point of departure to develop
a weaker sufficient condition for Li–Yorke chaos, one hinging on
the relation of the third iterate of the critical point to its unstable
fixed point.4 He applied his sufficient condition to establish (also
furnish numerical values for) the possibility of the M-map being a
Li–Yorke chaotic map. Subsequent work of Mukherji (2005), and
of Gardini et al. (2008), followed in Mitra’s footsteps not so much
as on Li–Yorke chaos, much less on his sufficient condition for it,
but on the stability of 2- and 4-period cycles. They also presented
a bifurcation analysis based on a comprehensive numerical inves-
tigation. Yano et al. (2011) carried the conversation forward by
changing the subject to ergodic chaos.

Generalizations of the Li–Yorke criteria parallel to that of Mitra,
have been available in the mathematical literature for quite some
time, and the questions this work asks and answers have not been
posed for the M-map: in the light of the generalization of the Li–
Yorke theorem in Nathanson (1977), what about the existence or
non-existence of 5- and 7-period cycles? And in the light of Fuglis-
ter (1979),what about any odd-numbered cycle? And finally, in the
light of Li et al. (1982),what about a cycle of order 2n for any natural
number n?5 More to the point, a rigorous mathematical proof of
the non-existence of a 3-period cycle, one that would underpin the
motivation for Mitra’s influential sufficient condition, has still not
been offered for a model that is well on its way to becoming an
important and canonical marker for the growth and development,
as well as the macroeconomic, literature.6

4 To be sure, this is our subjective, and perhaps opinionated reading of Mitra
(2001); only an individual author knows his or her motivation.
5 The uninitiated reader should note that all these papers involve existence of the

relevant cycle, and that their concern is not with stability.
6 For this literature, see Gancia and Zilibotti (2005), Dudek (2010), Matsuyama

et al. (2016), Yano and Furukawa (2013) and their references.

Sections 3 to 5 of this paper address this deficiency. They show
that 3- and 5-period cycles do not exist for any feasible parameter
values of the M-map, but cycles of all other periods do exist for
specific identifiable intervals of parameter values. In particular,
they show that one can identify an interval of parameter values
for which a 7-period cycle can exist. All this is executed through a
presentation of analytical formulae for the first four iterates of the
M-map. These iterate specifications serve to delineate the mani-
fold of the 2-dimensional parameter space, and to complement,
through additional geometric and algebraic considerations, the
numerical analysis in Gardini et al. (2008). In particular, the second
iterate is used in Section 2 to give a complete characterization of
all iterates for a specific parameter value that allows a 2-period
oscillation between the Solow and Romer regimes.7 We observe in
passing that it is a little surprising that such iterates have not been
reported in the literature on economic dynamics: they constitute
the secondary objective of the paper.8

2. The M-map and its second iterate

This tripartite section specifies the M-map arising from Mat-
suyama’s cyclical growth model, and with the devotion of the sec-
ond iterate of the M-map and to special case, begins the analytical
argumentation that constitutes the paper.

2.1. The M-map

The basic model is lucidly diagrammed in Matsuyama (1999)
(also see Fig. 1 presented here), and the algebra of its dynamics is
given by

xt = f (xt−1) ≡

⎧⎨⎩fl(xt−1) = Gx1−1/σ
t−1 0 ≤ xt−1 ≤ 1

fr (xt−1) =
Gxt−1

1 + θ (xt−1 − 1)
xt−1 > 1,

(1)

where θ ≡ (1 − 1/σ )1−σ , α = 1 − (1/σ ), leading to σ > 1
and α ∈ (0, 1). We refer the reader to the economic interpretation
of these parameters already available in the literature,9 and move
on to a transformation of variables whereby the M-map can be
rewritten in terms of the pair (G, β),

f (x) =

⎧⎨⎩
fl(x) = Gxα 0 ≤ x ≤ 1

fr (x) =
Gβx

β − 1 + x
x > 1,

(2)

where β = 1/θ = α
α

1−α with β in (1/e, 1) and decreasing with
α, and 1 < G < (1/β) − 1. As brought out in Matsuyama (1999)
and Gardini et al. (2008), a cyclical growth pattern occurs when
G ∈ (1, (1/β) − 1) and β < 1/2 (equivalently, α > 1/2). This

7 As we observe below, this case has especially caught the attention of the
growth and development literature; see Gancia and Zilibotti (2005) and Yano and
Furukawa (2013).
8 It is important, given Mitra and Nishimura (2001), that the reader not give

more than the necessary weight to our claim: Yano et al. (2011), and subsequent
work in Sato and Yano (2012a, b, 2013) and Yano et al. (2013), work with the
second iterate, and Mukherji (2005)[t] and Gardini et al. (2008) diagram numerical
snapshots of both the 2nd and4th iterates. Our point simply is that explicit formulae
for these iterates of the M-map, as are offered below, have not been furnished and
used for analytical results.
9 In addition to Matsuyama (1999) see, for example, Matsuyama (2001),

Mukherji (2005), Gancia and Zilibotti (2005) and Yano et al. (2013, Appendix).
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Fig. 2. The third iterate of the M-map for τ < 1.

implies that

f (G) = f 2(1) =
βG2

(β − 1 + G)
≡ τ < 1. (3)

With τ as an important benchmark, we turn to the derivation of
the second iterate.

2.2. The second iterate of the M-map

Consider the M-map given in Fig. 1 (also in Fig. 2) and note
how the second arm dips below unity to take the value τ . Two
other benchmarks are the elements x11 and x12 of the set f −1(1),
and they are obtained by taking at the vertical determined by the
critical point (1,G), and through the use of the 45-degree line,
the resulting horizontal to intersect with at the unimodal M-map
the two points. Thus, we obtain the four intervals that go towards
the determination of the second iterate. We can now algebraically
compute it to be

f 2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1+α(x)α
2

if 0 ≤ x ≤ x11 ≡ G−1/α

βG2xα

β − 1 + Gxα
if x11 ≤ x ≤ 1

β2G2x
(β − 1)2 + (β − 1 + βG)x

if 1 ≤ x ≤ x12 ≡
1 − β

1 − βG

G
(

βGx
β − 1 + x

)α

if x12 ≤ x ≤ G.

(4)

Note that f (x11) = f (x12) = 1, leading to f 2(x11) = f 2(x12) = G,
and that f 2(G) = Gτ α.

When diagrammed as Fig. 1, we note three intersections of the
second iterate with the 45-degree line: the fixed point x̂ of the
M-map itself, and a 2-period cycle. All this substantiates earlier
findings: in particular, we reproduce Theorem 6.1 in Yano et al.
(2011) that offers necessary and sufficient conditions for a range of
parameter values under which the M-map has the absolute value
of its slope greater than unity.

Proposition 1. The M-map, f : [τ ,G] → [τ ,G], is expansive, if and
only if
1
α

< G <
1 − β

2
[(β + 2) +

√
β2 + 4β].

We refer the reader to Yano et al. (2011, 2013) for the proofs and
additional discussion. We now turn to the case τ = 1.

2.3. A continuum of 2-period cycles

Mukherji (2005) has focused on 2-period cycles, and inves-
tigated the special case when β = 1/(1 + G) as of particular
interest. In terms of the notation of this paper, this translates to the
parameter value τ equaling unity, and lead to x12 equaling G, and
the fourth arm of the 2nd-iterate thereby being eliminated. More
to the point, we observe its third arm is the identity map. Routine
algebra furnishes the following specialization of (1).

fr (x) = −
Gx

G − (G + 1)x
and

d logfr (x)
d logx

= −
fr (x)
x

. (5)

This yields the implication that once x enters the absorbing interval
[1,G], it alternates between the two points on the right arm of the
M-map. Moving on to the specialization of 2nd-iterate, we obtain

f 2(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
((1 − β)/β)1+α(x)α

2
if 0 ≤ x ≤ (β/(1 − β))1/α,

(1 − β)xα

xα − β
if (β/(1 − β))1/α ≤ x ≤ 1

x if 1 ≤ x ≤ (β/(1 − β))−1.

(6)

It is the fact that f 2r (x) = x and the right arm of the M-map being
the square root of the identity over the interval [1,G] that gives
rise to a continuum of two-period cycles when τ = 1. This is of
particular interest in that it allows a complete characterization of
all the higher iterates of the M-map.10

The formulae look formidable, but the basic pattern is clear
enough. Over the interval [1,G], the nth iterate is the identity
map for all even integers n, and is the restriction of the M-map
itself to the same interval for odd n. More generally, the remaining
interval [0, 1], is divided into n intervals with n arms, and the
basic observation is that for each subsequent iteration, f −1 fur-
nishes only one additional point that results in only the first arm
splitting into two. The 5th and 6th iterates pictured in Fig. 3 give
the necessary intuition. Note also that all points are periodic or
eventually (not asymptotically) periodic. In terms of the language
used in Matsuyama (1999), the Matsuyama system is not chaotic,
and the fact that for the particular value τ = 1under consideration,
it is not difficult to demonstrate analytically that all cycles have the
period length of 2.

We can now present the general case. On defining xn as

f nl (xn) = 1, or equivalently,

xn = G−
∑n

i=1(α
i−1/αn), for n = 1, 2, . . . ,

we can assert the following.

Proposition 2. For τ = 1, and for k = 1, 2, . . ., the even and odd
iterates of the M-map are given by

f 2k(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 2kl (x) if 0 ≤ x ≤ x2k−1,

...
...

fr (f 2ℓ+1
l (x)) if x2ℓ+1 ≤ x ≤ x2ℓ

f 2ℓl (x) if x2ℓ ≤ x ≤ x2ℓ−1

...
...

fr (fl(x)) if x1 ≤ x ≤ 1
x if 1 ≤ x ≤ G,

10 For an exposition of Stefan’s 1977 construction of the square root of a map,
see Ruette (2017, Example 3.22).
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f 2k+1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 2k+1
l (x) if 0 ≤ x ≤ x2k,
fr (f 2kl (x)) if x2k ≤ x ≤ x2k−1

...
...

f 2ℓ+1
l (x) if x2ℓ+1 ≤ x ≤ x2ℓ
fr (f 2ℓl (x)) if x2ℓ ≤ x ≤ x2ℓ−1

...
...

fl(x) if x1 ≤ x ≤ 1
fr (x) if 1 ≤ x ≤ G,

where ℓ takes value from {1, 2, . . . , k − 1}.

Proof. In light of the earlier observations, the proof follows easily
by induction. First, it is easy to verify that f 2k(·) and f 2k+1(·) are
identical to f 2(·) and that f 3(·) when k = 1. Using the fact that
f 2r (·) is an identity map, we can show that f 2k+1(x) = f (f 2k(x)) and
f 2(k+1)(x) = f (f 2k+1(x)). ■

We can now move beyond the second iterate.

3. The non-existence of a 3-period cycle

This tripartite section presents the third iterate, comments on
the antecedent literature regarding the non-existence claim, and
then offers its proof.

3.1. The third iterate of the M-map

In the determination of the third iterate, we stay with the basic
procedure already delineated in the determination of the second
iterate. Instead of the vertical through (1,G), as in the determi-
nation of the second iterate, we focus on the critical benchmarks
x21, x22 and x23, as shown in Fig. 2, and constitutive elements of
the set (f 2)−1(1). Unlike the case of the tent-map, for example, we
do not obtain four points but only three: the procedure does not
keep doubling the turning points because both arms of the M-map
are not ‘‘onto’’. Thus, we obtain the seven intervals that go towards
the determination of the third iterate. In any case, the procedure is
now transparent; what is of relevance is that one can, in particular,
chart out the turning points of as many iterates as we like, all on
one map.

We present the algebraic specification of third iterate in Ap-
pendix, and turn the reader’s attention to Fig. 2. Note that f 2(x21) =

f 2(x22) = f 2(x23) = 1, leading to f 3(x21) = f 3(x22) = f 3(x23) = G.
We also obtain f 3(x11) = τ and f 3(x12) = τ . Finally, note that
f 3(1) = Gτ α and f 3(G) = f (Gτ α) = ρ, where the new parameter

ρ ≡
βG2τ α

β − 1 + Gτ α
. (7)

Remaining with Fig. 2, we see that the third iterate intersects
the 45-degree line only at the fixed point x̂ of the M-map itself,
and the two other fixed points of the second iterate designating a
2-period cycle, have disappeared. But of course, a rigorous proof
of the non-existence of a 3-period cycle requires argumentation
that goes beyond a picture. It requires a proof that the third iterate
intersects the 45-degree line only at one point for all values in the
admissible two-dimensionalmanifold of parameters, and that such
a proof has not yet been offered in the antecedent literature since
Matsuyama presented his model in 1999.

3.2. The claim and its antecedent literature

The following claim of obvious consequence for an understand-
ing of the M-map and its attendant complexity is pervasive in the
antecedent literature.

Theorem 1. There does not exist a 3-period cycle in the admissible
parameter manifold of the M-map.

In this subsection,we askwhether there exists a formal proof of the
above claim in the literature. We have already referred to Mitra’s
sufficient condition for Li–Yorke chaos, and his taking note of the
following seminal footnote in Matsuyama (1999).

It is straightforward to show that this system is not chaotic in
the sense of Li–York (sic), by demonstrating the non-existence
of period-3 cycles. For this it suffices to show that Φ3(kc) >

kc, . . . Note, however that this does not rule out the possibility
of chaotic trajectories. To rule out such a possibility, one needs
to show that all the cycles have period length of a power of 2, a
property that is difficult to demonstrate analytically.11

The point is that the system is indeed chaotic in the sense of
Li–Yorke, and that the (rather obvious) reason why the terse re-
marks in the footnote do not constitute a proof is simply that
the Li–Yorke theorem requires that there exists a 3-period cycle
starting from anywhere, and not necessarily one including the kink.
It is this reason thatmakesMitra’s sufficient condition for Li–Yorke
chaos all the more relevant for the M-map. As far as the literature
since Matsuyama (1999) andMitra (2001) is concerned, there is no
mention of 3-period cycles in Mukherji (2005) except for a general
remark on Li–Yorke chaotic maps; see Mukherji (2005, Footnote
10). In their section on ‘‘chaotic intervals’’, Gardini et al. (2008,
Section 2.3), the authors write, ‘‘Indeed as we see in Fig. 2, it is also
correct to say that cycles of period three cannot exist’’.

We now depict a piecewise-linearmap in the left panel of Fig. 4.
The map is defined as follows:

f (x) =

{ 1.1 + 3.9x if x ≤ 1
7.5 − 2.5x if x̄ ≥ x > 1

{(2.5x̄ − 7.5)/(5 − x̄)}(x − 5) if 5 ≥ x ≥ x̄

where x̄ = 2.95. Its third iterate is depicted in the right panel of
Fig. 4.

This map resembles the M-map in that the upward-sloping left
arm is (weakly) concave and the downward-sloping right arm is
convex. Although f 3(1) > 1, and therefore there is no 3-period
cycle starting from the critical point, it can be easily seen that there
exist two 3-period cycles elsewhere on the map.12 This numerical
example suggests that for a map with a concave left arm and a
convex right arm, we cannot establish the non-existence of the
3-period cycle by only investigating the critical point.13

3.3. A proof of the claim

The point then is that a rigorous analytical proof of the non-
existence of a 3-period cycle is needed. We provide such a proof in
the remainder of this section based on the third iterate of the M-
map. Towards this end,we shall also need the inequalities collected
as Lemma 1; their proof is relegated to Appendix and they can
perhaps be profitably skipped by a reader interested only in the
qualitative, rather than the quantitative, aspects of the M-map.

11 See Matsuyama (1999, Footnote 8). The footnote is an important marker of the
professional understanding of dynamical systems at the time. It continues, ‘‘Another
difficulty is that the Schwartzian derivative of the map, Φ, is not negative, which
means, among other things, that the iteration of the critical point, Φ ′(kc ), may fail
to detect stable cycles, even if they exist’’. Stability of the cycles is not our (or Li–
Yorke’s) concern in this essay.
12 Indeed, one of the 3-period cycles is stable, though stability is not the concern
here.
13 This observation is perhaps more pertinent to a map more general than the
specific M-map.



50 L. Deng, M.A. Khan / Journal of Mathematical Economics 74 (2018) 46–55

Fig. 3. The fifth and sixth iterates of the M-map for τ = 1.

Fig. 4. A counter-example.

Lemma 1. For any G in (1, (1−β)/β), the following inequalities hold:(
max

(
(1 − β)2 − β2G3

(1 − β − βG)G
, 0
))1/α

< x11 < τ.

We can now turn to the proof of Theorem 1.

Proof.Webegin the proofwith the assertion that the interval [τ ,G]

constitutes an absorbing interval.14 Formally, we want to show
that for any x > 0, there exists N ∈ N such that for any n ∈ N
with n > N , f n(x) ∈ [τ ,G]. First, f ([τ ,G]) = [τ ,G], so if x ∈ [τ ,G],
then f n(x) ∈ [τ ,G] for any n ∈ N. Second, consider x ∈ (0, τ ). Note
that Gxα > Gx. Pick N to be the smallest integer that is greater
than (ln τ − ln x)/lnG. Then f Nl (x) > τ , so f n(x) ∈ [τ ,G] for any
n ∈ Nwith n > N . Last, the argument concerning x ∈ (0, τ ) carries
through for x > G because f (x) ∈ (0, τ ).

A 3-period cycle, if it exists, must be on the absorbing interval
[τ ,G]. First, at least one periodic point is on the left arm of the
M-map. If this is not the case, then according to the 3rd iterate of

14 This absorbing interval has been established by Mukherji (2005).We thank one
of our referees for pointing this out.

the M-map (also see the 6th arm in Fig. 2), the following equation
must admit at least three distinct roots:

x =
β3G3x

(β − 1)3 + [(β − 1)2 + (β − 1)βG + β2G2]x
.

There is a unique solution to the equation above, which is the fixed
point of f , so a 3-period cycle cannot occur entirely on the right arm
of the M-map. Second, at most one point of a 3-period cycle must
be on the left arm of theM-map. If this is not the case, two periodic
points on the left armmust occur consecutively in a 3-period cycle.
However, since we know Gτ α > 1, which implies Gxα > 1 for any
x ∈ [τ , 1], this leads to a contradiction.

We have now shown that there must be one point on the
left arm and two points on the right arm in a three-period cycle.
According to our formula of the third iterate of the M-map (also
see the 3rd arm in Fig. 2), this suggests that there exists x̂ ∈ [τ , 1)
such that f 2r (fℓ(x̂)) = x̂, or equivalently,

β2G3x̂α

(β − 1)2 + (β − 1 + βG)Gx̂α
= x̂.
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Since
β2G3xα

(β − 1)2 + (β − 1 + βG)Gxα
> xα,

if x >

(
max

(
(1 − β)2 − β2G3

(1 − β − βG)G
, 0
))1/α

,

according to Lemma 1, this implies

β2G3xα

(β − 1)2 + (β − 1 + βG)Gxα
> xα for x ≥ τ ,

which further implies that x̂ > x̂α . However, xα > x for x < 1, and
we obtain the contradiction and complete the proof. ■

It bears emphasis that two of the steps used in the proof presented
above are available in the literature. First, the claim that the inter-
val [τ ,G] is an absorbing interval constitutes Lemma 6.1 in Yano
et al. (2011).15 Second, the proof relies on Lemma 1 whose proof
is relegated to the Appendix, and where we explicitly note that
only one of the inequalities of the lemma is available as Footnote 8
in Matsuyama (1999). However, the proof presented above relies
on both inequalities.

Next, we move on to the fourth iterate, and to the possibility of
a 5-period cycle.

4. The non-existence of a 5-period cycle

The fact that the M-map is not complicated enough to have a
3-period cycle anywhere in its manifold of admissible parameters
is a folk-result in the sense that it is well-known, even if it was not
so far proved.What is notwell-known, and to the knowledge of the
authors never asked, is whether theM-map is complicated enough
to have a 5-period cycle anywhere in its manifold of admissible
parameters. We turn to this question in this section.

4.1. The fourth iterate of the M-map

Consider Fig. 5 and the fourth iterate of the M-map. As men-
tioned in the opening paragraph of Section 3, the procedure to
determine it is by now quite routine. Instead of the set (f 2)−1(1),
we work with (f 3)−1(1) to obtain the five points x3i, i = 1, . . . , 5,
and, in general, the twelve intervals. The qualifier ‘‘in general’’
highlights the fact that there may be only 11 arms to the fourth
iterate depending on the parameter values, as depicted in Fig. 5. All
this is a continuing testament to the fact that unlike the tent-map,
one of the two arms of theM-map is not ‘‘onto’’ the unit interval.16

Again, we spare the reader the detailed algebraic specification
of the fourth iterate by relegating it to Appendix, and focusing
his/her attention on its diagrammatic representation in Fig. 5.
We see that the fourth iterate intersects the 45-degree line at
three points: the fixed point x̂ of the M-map itself and the unique
2-period cycle. These findings can be usefully compared with Fig-
ures 4 in Gardini et al. (2008).17 In looking at Fig. 5, note that in
linewith the iterative procedurewe are following, f 3(x3i) = 1, i =

1, . . . , 5, necessarily implies f 4(x3i) = G, i = 1, . . . , 5. Note also
that

f 4(x21) = f 4(x22) = f 4(x23) = τ and f 4(x11) = f 4(x12) = Gτ α,

15 The authors do not write out the straightforward proof, and we do so only for
completeness and for the reader’s convenience. We also take this opportunity to
thank two anonymous referees for seeing the need to couch our arguments in terms
of the absorbing interval.
16 In this, the M-map shares a commonality with the check-map studied in, for
example, Khan and Mitra (2005, 2013) and Khan and Piazza (2011).
17 In this comparison, note the fact that there is no continuum of 4-period cycles
as analytically revealed by the algebraic specification of the fourth iterate. We
exaggerate this comparison by giving more curvature to the representation of the
iterate in the interval ranges [x22, 1].

Fig. 5. The fourth iterate of the M-map for τ < 1 and ρ < 1.

that f 4(1) = ρ and that f 4(G) = f (ρ). Finally, note that there exists
the 12th arm if and only if G > x35, or equivalently, τ < x22, which
is also equivalent to ρ > 1, and that the 13th arm does not exist
because we have already shown that τ > x11.

4.2. The result and its proof

The surprise here is that to show thenon-existence of a 5-period
cycle, we do not need to compute the fifth iterate and to show
that it intersects the 45-degree line only at one point for all values
in the admissible two-dimensional manifold of parameters. The
algebraic specification of the fourth iterate suffices!We beginwith
a statement of the second principal claim of the paper.

Theorem 2. There does not exist a 5-period cycle in the admissible
parameter manifold of the M-map.

The proof of the result relies on the following inequalities, and
we again relegate their proofs to Appendix.

Lemma2. For any G in (1, (1−β)/β), the following inequalities hold:

(i) Gτ α > x23, (ii) ρ < x12,

(iii)
(
max

(
(β − 1)4 − β4G5

G(1 − β − βG)[(β − 1)2 + β2G2]
, 0
))1/α

< x33.

We can now turn to the proof of the theorem.

Proof. First, a 5-period cycle can only occur over the range [τ ,G].
According to Lemma 1, this implies that a fixed point of f 5(·) must
be no less than x11. Second, if there is a five-period cycle, at least
one point on the cycle must be on the left arm. This can be seen by
solving the fixed point for the fifth-iterate of the right arm given
by

β5G5x
(β − 1)5 + [(β − 1)4 + βG(β − 1)3 + β2G2(β − 1)2 + β3G3(β − 1) + β4G4]x
= x.

There is a unique fixed point and it coincideswith the fixed point of
f (·), so it is impossible to have a five-period cyclewith all the points
on the right arm of the original M-map. Hence, for there to be a
five-period cycle, there must exist a fixed point of f 5(·) in [x11, 1].
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We first consider the interval [x11, x33]. The fourth iterate on
this interval increases with x, and we have f 4(x11) = Gτ α > 1
and f 4(x33) = G. This implies that the fifth iterate on this interval
decreases with x. According to Lemma 2(i), Gτ α > x23, so f 5(x33) =

τ > (x23/G)1/α = x33. Therefore, f 5(x) ≥ f 5(x33) > x33 ≥ x for
x ∈ [x11, x33]. There is no fixed point of the fifth-iterate on this
interval.

Next, consider the interval [x33, x22]. The fourth iterate on this
interval decreases with x, and we have f 4(x33) = G and f 4(x22) =

τ < 1. Define x4 ∈ [x33, x22] such that f 4(x4) = 1. Then the fifth
iterate increases with x for x ∈ [x33, x4]. It can be shown that

β4G5xα

(β − 1)4 + [(β − 1)3 + βG(β − 1)2 + β2G2(β − 1) + β3G3]Gxα
> xα

⇐⇒ x >

(
max

(
(β − 1)4 − β4G5

G(1 − β − βG)[(β − 1)2 + β2G2]
, 0
))1/α

.

According to Lemma 2(iii), this implies the inequality holds for
x ≥ x33. Moreover, xα > x for x ≤ x4 < 1. Combining these two
inequalities, we have f 5(x) > x for x ∈ [x33, x4]. The fifth iterate
decreases with x for x ∈ [x4, x22]. We have f 5(x) ≥ f 5(x22) =

Gτ α > 1 > x22 ≥ x. Therefore, there is no fixed point in [x33, x22].
Consider the last interval [x22, 1]. The fourth iterate on this

interval increases with x. There are two possible cases. If f 4(1) =

ρ ≤ 1, the fifth arm increases with x on this interval, so f 5(x) ≥

f 5(x22) > 1 ≥ x. If f 4(1) > 1, the fifth arm first increases and then
decreases with x for x ∈ [x22, 1]. However, as Lemma 2(ii) implies
ρ < (1−β)/(1−Gβ) or equivalently f (ρ) = (Gβρ)/(β−1+ρ) > 1,
we again have f 5(x) > 1 ≥ x for any x ∈ [x22, 1]. There is no fixed
point in [x22, 1] and the proof is complete. ■

5. The existence of cycles of 6- and higher periods

As emphasized in Section 1, the motivation of this work is
to shift the emphasis from numerical determinations of the ex-
istence of ‘‘chaos’’ to an analytical examination of how rich and
complicated are the dynamics that one can associate with the M-
map. We have also been emphasizing that our primary concern is
with questions of existence rather than that of the stability or the
genericity of periodic orbits. As such, we ask for the smallest value
of odd n > 5 for which n-period cycles, stable or unstable, exist?

5.1. A 7-period cycle

A numerical answer is furnished in the following example that
presents a trajectory of a 7-period cycle that includes the critical
point (kink) of the M-map.

Example 1.
For α = 0.99, there exists G∗

∈ (1, (1 − β)/β) (G∗
≈ 1.01016)

such that a 7-period cycle starts from the critical point of the
M-map.

The example is diagrammed in Fig. 6. It is also of some interest
thatwe can underscore our analytical findings regarding the fourth
iterate by an example within the same parametric regime given by
α = 0.99.

Example 2.
For α = 0.99, there exists G∗∗

∈ (1, (1−β)/β) (G∗∗
≈ 1.29886)

such that a 4-period cycle starts from the critical point of the
M-map.

These examples, and especially the first, are of interest in their
own right, but we now use them instrumentally to present a result
in the following subsection: it completes the existence question
that we pose in this paper, and can be usefully compared with

Fig. 6. Example 1 on the existence of a 7-period cycle.

Claim 12 and Proposition 1 in Mukherji (2005). Let us also take
this opportunity to draw attention to the fact that Sharkovsky’s
theorem guarantees that in this parametric regime (α = 0.99),
there exist cycles of all periods greater than or equal to seven.18

5.2. A general result

Consider an n-period cycle with its orbit specified in the fol-
lowing way: it starts from the critical point 1, and, after hitting G
and Gτ α , it stays on the right arm of the M-map until it hits the
critical point again. Fig. 6 illustrates an example of this type of cycle.
Formally, there exists an n-period (n ≥ 3) cyclewith this particular
orbit if f n−3

r

[
fl(f 2r (1))

]
= 1, or equivalently,

Gτ α
=

[
1

1 + Gβ − β
+

(
Gβ

β − 1

)n−4 Gβ2(1 − G)
(1 − β)(1 + Gβ − β)

]−1

≡ ϕn(β,G).

We can now consider a subset of the 2-dimensional parameter
space given by

Pn = {(β,G) ∈ (1/e, 1/2) × (1, (1 − β)/β) : Gτ α
= ϕn(β,G)}.

Then Theorems 1 and 2 imply that Pn = ∅ for n = 3, 5. The ques-
tion then pertains to higher values of n.Wecan use Examples 1 and
2 to present the following consequence of the intermediate value
theorem.

Proposition 3. For n ≥ 3, Pn ̸= ∅ for all n ̸= 3 and 5.

Proof. For G ∈ (1, (1 − β)/β), ϕn(β,G) ≡ yn ∈ (y7, y4) for any
n ≥ 6 and n ̸= 7. In Examples 1 and 2, we have shown that for
α = 0.99, G∗τ α

= y7 and G∗∗τ α
= y4. Therefore, when α = 0.99,

n ≥ 6, and n ̸= 7, we have yn > y7 = Gτ α for G = G∗ and
yn < y4 = Gτ α for G = G∗∗. When α is given, both Gτ α and yn are
continuous in G. According to the intermediate value theorem, for
α = 0.99, there exists G ∈ (G∗∗,G∗) such that yn = Gτ α for n ≥ 6
and n ̸= 7. Therefore,Pn ̸= ∅ for all n = 4 or n ≥ 6. This completes
our proof. ■

18 See, for example, Khan and Piazza (2011, p. 413) for a discussion of the theorem
in the context of the RSS model and the checkmap.
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Our proof is based on the numerical experiments with α =

0.99. Indeed, α has to be sufficiently close to one for Pn to be non-
empty (n ̸= 3 and 5).

However useful numerical examples prove to be, they surely
need underscoring by an analytical result. A natural question con-
cerns parameter values under which 7-period cycles exists! We
answer this question by appealing to the generalization of the Li–
Yorke theorem presented in Li et al. (1982), henceforth LMPY, and
further refined by Ruette (2017, Proposition 3.34). We can present

Theorem 3. A sufficient condition for the existence of a 7-period cycle
of the M-map is given by

0 < f 3r (ρ)

=
β4G5τα

(β − 1)4 + [(β − 1)3 + βG(β − 1)2 + β2G2(β − 1) + β3G3]Gτα
≤ 1.

Proof. According to the LMPY theorem, there exists a 7-period
cycle if f 7(x) ≤ x < f (x) for some x. In applying this result, we
work with x = 1. Since f (1) = G > 1, for a 7-period cycle, we need
conditions that guarantee f 7(1) ≤ 1. We have already shown that
f 2(1) = τ < 1 and that f 3(1) = Gτ α > 1. We now want to show
f 4(1) = fr (Gτ α) ≡ ρ > 1, fr (ρ) > 1, and f 2r (ρ) > 1.

First, fr (ρ) > 1 directly follows Lemma 2(i). Second, f 3r (ρ) ∈

(0, 1] implies

0 <

[
βG − β

1 + βG − β

(
βG

β − 1

)4

+
1

1 + βG − β

]
Gτ α

≤ 1,

which further implies Gτ α < 1 + βG − β .
By construction, f 3(1) > 1 implies ρ > 0 and fr (ρ) > 1 implies

f 2r (ρ) > 0. If ρ ∈ (0, 1], thenGτ α
≥ (1−β)/(1−βG) > 1+βG−β ,

contradicting the inequality we have obtained above. If f 2r (ρ) ∈

(0, 1], we have[
βG − β

1 + βG − β

(
βG

β − 1

)3

+
1

1 + βG − β

]
Gτ α

≥ 1.

Since β < 1, this implies Gτ α > 1 + βG − β , which again leads to
contradiction.

In sum, we have shown f 4(1) = ρ > 1, fr (ρ) > 1, f 2r (ρ) > 1.
This implies that fr (ρ) = f 5(1) > 1, f 2r (ρ) = f 6(1) > 1, f 3r (ρ) =

f 7(1), and therefore, f 7(1) ≤ 1. Applying the LMPY theorem, we
obtain a 7-period cycle. ■

We now conclude this section with

Example 3.
For α = 0.99, there exists G = 1.01015 such that the inequality

identified in Theorem 3 holds strictly.

Moreover, when α = 0.99 and G = 1.01015, the conditions
identified in Theorem 6.1 of Yano et al. (2011) are also satisfied.
This suggests that for appropriate parameter values, the M-map
exhibits a special form of ergodic chaos with cycles of all periods
but 3 or 5.19

6. Concluding remark

The points this papermakes, and the results it reports, are sharp
enough that one need not go beyond the abstract and the introduc-
tion so as to summarize them yet again. Instead, we conclude with
a simple epistemological remark.

Since May’s influential 1976 piece in Nature emphasizing com-
plicated dynamics from simplemodels, there has been a numerical

19 We thank one of our referees for pointing out this connection.

turn in that questions of comparative economic dynamics, and
therefore of economic dynamics, depend essentially of identifica-
tion of parametric ranges within which the map does not change
abruptly. This is not true for the earlier literature, both in growth
and development, as well as in macroeconomics, in which broad
qualitative assumptions such as convexity or super-modularity
sufficed. Iterates are now sure to play an important and obvious
part in further elaborations that discipline ad hoc savings function
by optimizing behavior, as for example, in Matsuyama (2001),
Dudek (2010), Kennedy and Stockman (2008), Stockman (2010),
and by adducing additional stylized facts and temporal specifica-
tions stemming from short- and the long-run. Muchmore remains
to be done.

Appendix

We begin with the proofs of the lemmata.

Proof of Lemma 1. The second assertion has been proved in Mat-
suyama (1999), and we transcribe the proof there under our nota-
tion here. Define h1(G) ≡ βG2+1/α

− (G + β − 1), and note that
h1(1) = 0, and h′

1(G) = (2 + 1/α)βG1+1/α
− 1 > 0 for G > 1,

because 2 + 1/α > 3 and β > 1/e > 1/3. This implies h1(G) > 0
for G > 1, and so τ − x11 = h1(G)/[G1/α(G + β − 1)] > 0 for any
G > 1.

For the first assertion, if (1 − β)2 ≤ β2G3, then the inequality
trivially holds. If (1 − β)2 > β2G3, it suffices to show that

(1 − β)2 − β2G3

(1 − β − βG)
< 1 ⇐⇒ βG − β2G3

− β + β2 < 0.

Define h2(G) = βG − β2G3
− β + β2, and note that h2(1) = 0

and h′

2(G) = β − 3β2G2 < 0 for G > 1. Hence, h2(G) < 0 for any
G > 1. ■

Proof of Lemma 2. Since τ < 1, it suffices to show for (i) that

Gτ =
βG3

β − 1 + G
>

(1 − β)2

G2β2 + (1 − β − βG)
⇐⇒ βG3(β2G2

+ 1 − β − βG) > (1 − β)2(β − 1 + G).

Define h3(G) ≡ βG3(β2G2
+1−β −βG)− (1−β)2(β −1+G).We

want to show h3(G) > 0 for G > 1. Since h3(1) = 0, we just need
to show

h′

3(G) = 5β3G4
− 4β2G3

+ 3(1 − β)βG2
− (1 − β)2 > 0 for G > 1.

Define ℓ(β) ≡ h′

3(1) = 5β3
− 4β2

+ 3(1 − β)β − (1 − β)2.
Simple calculation shows ℓ(1/e) ≈ 0.006 > 0, and ℓ′(β) =

15β2
− 16β + 5 > 0 for β ∈ (1/e, 1/2), so h′

3(1) > 0. Consider
the second derivative h′′

3(G) = 20β3G3
− 12β2G2

+ 6(1 − β)βG =

2βG[10β2G2
− 6βG+ 3(1− β)]. It is straightforward to show that

h4(G) ≡ 10β2G2
− 6βG + 3(1 − β) is an increasing function of G

and h4(1) > 0, so h′′

3(G) > 0. This implies h′

3(G) > 0 for G > 1.
For (ii), we want to show explicitly that

τ α >
(1 − β)2

(1 − β)G − (1 − βG)βG2 or that τ

>
(1 − β)2

(1 − β)G − (1 − βG)βG2 ,

since τ < 1. This reduces to the case to (i) above.
For (iii), if (β − 1)4 − β4G5

≤ 0, then the inequality trivially
holds. We then consider (β − 1)4 − β4G5 > 0. Rearranging the
inequality, we want to show

(β − 1)4 − β4G5

(1 − β − βG)[(β − 1)2 + β2G2]
<

(1 − β)2

β2G2 + (1 − β − βG)
,
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f 4(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1+α+α2
+α3

(x)α
4

if 0 ≤ x ≤ x31 ≡ G−(α2
+α+1)/α3

,

βGα2
+α+2xα3

β − 1 + Gα2+α+1xα3 if x31 ≤ x ≤ x21

β2Gα+3xα2

(β − 1)2 + (β − 1 + βG)Gα+1xα2 if x21 ≤ x ≤ x32 ≡

(
1 − β

(1 − βG)Gα+1

)1/α2

G

(
βGα+2xα2

β − 1 + Gα+1xα2

)α

if x32 ≤ x ≤ x11

G
(

β2G3xα

(β − 1)2 + (β − 1 + βG)Gxα

)α

if x11 ≤ x ≤ x33 ≡

(
(1 − β)2

β2G3 + (1 − β − βG)G

)1/α

β3G4xα

(β − 1)3 + [(β − 1)2 + (β − 1)βG + β2G2]Gxα
if x33 ≤ x ≤ x22

β1+αG2+2αxα2

(β − 1)(β − 1 + Gxα)α + βαG1+2αxα2 if x22 ≤ x ≤ 1

β1+2αG2+2αxα

(β − 1)[(β − 1)2 + (βG + β − 1)x]α + β2αG1+2αxα
if 1 ≤ x ≤ x23

β4G4x
(β − 1)4 + [(β − 1)3 + βG(β − 1)2 + β2G2(β − 1) + β3G3]x

if x23 ≤ x ≤ x34 ≡
(1 − β)3

(1 − β)2 − β3G3 − (1 − β − βG)βG

G
(

β3G3x
(β − 1)3 + [(β − 1)2 + (β − 1)βG + β2G2]x

)α

if x34 ≤ x ≤ x12

G
(

β1+αG2+αxα

(β − 1)(β − 1 + x)α + βαG1+αxα

)α

if x12 ≤ x ≤ min
{
G, x35 ≡

(1 − β)x22
x22 − βG

}
β2+αG3+αxα

(β − 1)2(β − 1 + x)α + (β − 1 + βG)βαG1+αxα
if x35 ≤ x ≤ G and x35 < G.

Box I.

or equivalently,

(β − 1)4β2G2
− β6G7

− (1 − β − βG)β4G5

< (1 − β − βG)(1 − β)2β2G2.

This inequality can be further simplified to βG3(β2G2
+ 1 − β −

βG) > (1−β)2(G+β − 1), which has been established above. ■

The third iterate of f (·) is given by

f 3(x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1+α+α2
(x)α

3
if 0 ≤ x ≤ x21
≡ G−(α+1)/α2

,

βG2+αxα2

β − 1 + Gα+1xα2 if x21 ≤ x ≤ x11

β2G3xα

(β − 1)2 + (β − 1 + βG)Gxα
if x11 ≤ x ≤ x22

≡

(
1 − β

G − βG2

)1/α

G
(

βG2xα

β − 1 + Gxα

)α

if x22 ≤ x ≤ 1

G
(

β2G2x
(β − 1)2 + (β − 1 + βG)x

)α

if 1 ≤ x ≤ x23

≡
(1 − β)2

β2G2 + (1 − β − βG)
β3G3x

(β − 1)3 + [(β − 1)2 + (β − 1)βG + β2G2]x
if x23 ≤ x ≤ x12

β1+αG2+αxα

(β − 1)(β − 1 + x)α + βαG1+αxα
if x12 ≤ x ≤ G.

Next, the fourth f 4(·) iterate of f (·) is given in Box I.
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