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a b s t r a c t

This paper presents necessary and sufficient conditions for 3-period cycles in the two-sector Robinson–
Solow–Srinivasan (RSS) model, taking as its point of departure an independently-(and simultaneously-)
discovered exact discount-factor restriction for a general class of growth models by Mitra and
Nishimura–Yano (MNY) in 1996. Our investigation of this remarkable result in the specificity of the
RSS model enables a broadened inquiry that goes beyond the discount factor to parameters of labor-
productivity and capital-depreciation. Since the RSS model, despite its concrete simplicity, is not
covered by the general MNY model, the exact discount-factor restriction presented here does not
follow from the MNY theorem, and necessitates new argumentation. Furthermore, we present a novel
exact parametric region as our second result.

© 2020 Elsevier B.V. All rights reserved.

A violent order is a disorder; and a great disorder is an order.
These two things are one. Wallace Stevens (1942)1

The unassimilable fact leads us on: we are led on to the bound-
aries where relations loosen into chaos. A. R. Ammons (1961)2

✩ It is with strong feelings of both sadness and satisfaction that the first two
authors submit this manuscript for publication: sadness because the gifts and
talents of Tapan Mitra are no longer with us, satisfaction because it brings to
completion a project that began in 2010 but whose principal result was derived
in active correspondence with him during the last five months of his life, and
regarding which he retained an enthusiasm till the end. In the sequel, we reserve
a section in the Appendix on an optimization problem to make salient his precise
breakthrough. The responsibility for any blemishes in this is however solely
ours. This final version has benefited from the erudition and careful reading of
an anonymous referee. Liuchun Deng acknowledges the support of the Start-up
Grant from Yale-NUS College, Singapore.

∗ Corresponding author.
E-mail address: liuchun.deng@yale-nus.edu.sg (L. Deng).

1 See Connoisseur of Chaos (1997), p.194 in F. Kermode and J. Richardson (eds.)
Wallace Stevens: Collected Poetry and Prose. New York: The Library of America.
Also see Chaos in Motion and Not in Motion, p. 311. In this and the subsequent
quotation below, we disregard line-breaks and the consequent punctuation.
2 See The Misfit (2017), p.132 in R. M. West (ed.) The Complete Poems of A.

R. Ammons, Volume 1. New York: W. W. Norton and Company. Also see Chaos
Staggered Up the Hill, p.500; and Tobin (1999).

1. Introduction

In an instance of independent and simultaneous discovery
of 24 years ago, Mitra (1996) and Nishimura and Yano (1996)
presented the following result.3

Theorem MNY. For a class G of qualitatively-delineated dynamic
optimization models, there exists ρ̄ = [(

√
5 − 1)/2]2 with the

following two properties:
(i) if the optimal policy function of any G ∈ G exhibits a

3-period cycle, then the discount factor necessarily lies in (0, ρ̄);
(ii) for any discount factor in (0, ρ̄), there exists G ∈ G such

that the policy function of G exhibits a 3-period cycle.

This remarkable result is typically characterized as an ‘‘exact
discount factor restriction’’ in optimal dynamics and understood
and abbreviated as a necessary and sufficient condition for com-
plicated dynamics for a general but precisely-specified class of
models. It is a remarkable result in that by virtue of the fact that
the technological specification of the considered class of models
eschews explicit functional forms and is delineated only by as-
sumptions expressed in a qualitative postulational form, a specific

3 See Mitra (1996) and Nishimura and Yano (1996). Since we are emphasizing
‘‘simultaneity’’, the reader should note that careful inspection of the sets of
assumption of the two models, as in the footnote below, yields that the results
are not identical: however, for the purposes of this paper, they are similar
enough.
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number for the discount factor can nevertheless be furnished —
Mitra refers to this number as a ‘‘universal" constant. Further-
more, to the extent that complicated dynamics are represented by
3-period cycles, it is testimony to the importance of the Li–Yorke
theorem (Li and Yorke, 1975) of chaotic dynamics on the unit
interval. The result itself followed an earlier opening by Sorger
(1994) and has led to a rich trajectory of work (Sorger, 2018) and
by now has gone beyond the investigation of 3-period cycles into
a body of work that Mitra and Sorger (1999) and their followers
refer to as ‘‘rationalizability conditions for dynamic optimization
problems’’.

The question is how general is the general class of models
that this literature addresses. To be sure, in keeping with the
one-dimensional rubric of chaotic dynamics, the models are al-
ready limited to a single capital stock, but disregarding this, their
assumptions on the technological specification do not go very
much beyond the requirements of closedness, convexity, free-
disposal, inaction and the impossibility of an output without an
input; and those on the planner’s preferences beyond continuity,
monotonicity and a version of strict concavity.4 The point is
that this admittedly general setting rules out the two-sector RSS
model.5 Even though not a special case, the question remains
whether the tools and techniques pioneered by MNY carry over in
a routine way to deliver an analogous result for the RSS case? And
if so, is it at all obvious that the same universal constant would
then be obtained? And indeed whether the inquiry itself could be
broadened to a model with explicit functional forms to take the
question beyond the discount factor to other explicit parameters
of the model: to labor productivity and to the depreciation rate,
the other two parameters of the RSS specification, for the example
considered here?

In this paper we address all of these questions. However, a
basic point regarding motivation needs clarification at the outset:
our investigation is not simply to domesticate an erratic special
case falling outside the general scope of the theory, but rather
an elaboration and underscoring of May’s 1976 dictum of simple
explicitly-specified models as being important litmus tests of
general results in dynamical systems and economic dynamics.6
And leaving aside any question as to the nature of the argu-
mentation, what we find is indeed surprising. First, there is a
universal constant for the RSS model but one different from the
one discovered earlier for the ‘‘general’’ case: rather than ρ̄, it
is ρ̂ = ((

√
3 − 1)/2) < ρ̄. This constitutes our first theorem.

Second, and perhaps even more importantly, the specificity of the
RSS conception allows one to devalorize the discount-factor; in
short to emphasize labor productivity and capital durability in a
measure equal to the rate of impatience. However, rather than a
necessary and sufficient condition (in the sense of Theorem MNY
above) for each of these parameters, we identify a necessary
and sufficient region of the two parameters. This constitutes our

4 The key difference between Mitra (1996) and Nishimura and Yano (1996)
lies in their assumptions on the reduced form utility function. In Mitra (1996),
the utility function is required to be strictly concave with a relatively weak
monotonicity assumption, while in Nishimura and Yano (1996), the utility
function is required to be strictly increasing in its first argument, strictly
decreasing in its second argument, concave but not necessarily strictly concave.
5 A1(ii), A4 and A5 in Mitra (1996) are violated; in particular, the reduced-

form utility function is not strictly concave (A5 not satisfied). Note that A4 is
in fact not necessary for his main results in Mitra (1996). As regards A2 in
Nishimura and Yano (1996), the strict monotonicity assumption does hold for
the RSS model. The claim here is that their theorems as stated do not apply to
the RSS model considered here; this is not to say that their methods of proof
could not be applied to the proof of Theorem 1 in some ingenious manner.
6 See May (1976, 2001) and May and Oster (1976) for stressing the impor-

tance of simple deterministic discrete-time models to understand complicated
dynamics.

second theorem: its formulation involves subtle differences from
our first result, and we address them in some detail in the sequel.

In their investigation of the RSS model originally initiated
in 2005, Khan–Mitra provided in 2010 an ‘‘explicit solution of
the optimal policy function (henceforth OPF) when the discount
factor is less than the labor-output ratio’’, and used that solution
to follow up their earlier result on the existence of optimal topo-
logical chaos for the model in a way that only a few qualitative
observations of the OPF needed to be utilized for this purpose;
see Khan and Mitra (2005a,b). Using the more detailed infor-
mation on the OPF subsequently available, they could establish
optimal chaotic dynamics for a non-negligible parametric ranges
of the model.7 In that study, they also touched on the questions
being posed here but in a diffused non-conclusive way. They
considered both 3-period cycles and turbulence, as formalized
by Block–Coppel–Misurewicz using Smale’s work as a point of
departure,8 but what is of consequence and relevance to this
paper is that in the earlier study, they could not obtain an exact
discount-factor restriction for 3-period cycles. However, they did
obtain an exact restriction for the labor-output ratio, one of the
other technological parameters of the model. Our Theorem 1 is
the result that eluded them, and our Theorem 2 is a far-reaching
generalization of their second result. After presenting what we
see to be definitive results, we further discuss their relation to
the earlier exploratory ones in Section 3 so that the marginal
contribution of this paper relative to theirs can be fully gauged.
We also discuss the novelty of the argumentation provided here
as compared to the earlier proofs. After a brief recapitulation
of the RSS model in Section 2, this is done in Section 5 on the
proofs and the ancillary results that they rely on. We also include,
for the convenience of the reader, several known results on the
properties of the optimal policy from Khan and Mitra (2007, 2012,
2020) in Section 5. Section 4 is a two-remark concluding section
spelling out open questions.

2. The model and antecedent results

We consider the two-sector discrete-time RSS model of op-
timal growth with discounting. There are two sectors in the
economy. In the consumption good sector, it requires a unit of
labor and a unit of investment good to produce a unit of the
consumption good. In the investment good sector, only labor is
required to produce the investment good. In particular, it requires
a > 0 units of labor to produce a unit of investment good. Capital
depreciates at the rate of d ∈ (0, 1). A constant amount of labor,
normalized to unity, is available in each time period t . Denote the
capital stock in the current period (today) by x and that in the
next period (tomorrow) by x′. The transition possibility set then
takes the specific form

Ω = {(x, x′) ∈ R
2
+

: x′
− (1 − d)x ≥ 0 and a(x′

− (1 − d)x) ≤ 1}.

Associated with Ω is the transition correspondence, Γ :

R+ → R+, given by Γ (x) = {x′
∈ R+ : (x, x′) ∈ Ω}. For any

(x, x′) ∈ Ω . Denote by y the amount of capital stock available for
the production of the consumption good. We have

Λ : Ω −→ R+ with Λ(x, x′)
= {y ∈ R+ : 0 ≤ y ≤ x and y ≤ 1 − a(x′

− (1 − d)x)}.

Welfare is derived only from the consumption good and is rep-
resented by a linear function, normalized so that y units of the
consumption good yield a welfare level y. A reduced form utility
function is given by

u : Ω → R+ with u(x, x′) = max{y ∈ Λ(x, x′)}

7 The paper was published only in 2020; see Khan and Mitra (2020).
8 See Smale (1967), Misiurewicz and Block and Coppel (1992).
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The intertemporal preference is represented by the present value
of the stream of welfare levels with a discount factor ρ ∈ (0, 1).
In the sequel production plans in the set Ω and in the domain
of Λ will also be generically denoted as (x(t), x(t + 1)) when we
want to emphasize the temporal aspect.

A two-sector RSS model consists of a triplet (a, d, ρ). A pro-
gram {x(t), y(t)} from x0 is a sequence {x(t), y(t)} such that x(0) =

x0, and for all t ∈ N, (x(t), x(t + 1)) ∈ Ω and y(t) =

maxΛ(x(t), x(t + 1)). A program {x(t), y(t)} is stationary if for all
t ∈ N, (x(t), y(t)) = (x(t+1), y(t+1)). A program {x̄(t), ȳ(t)} from
x0 is called optimal if
∞∑
t=0

ρtu(x(t), x(t + 1)) ≤

∞∑
t=0

ρtu(x̄(t), x̄(t + 1))

for every program {x(t), y(t)} from x0. The parameter ξ ≡ (1/a)−
(1 − d) features prominently in the subsequent analysis. It rep-
resents the marginal rate of transformation of capital today into
that of tomorrow under full utilization of resources. In what
follows, and without further mention, we always assume that the
parameters (a, d) of the RSS model are such that9

ξ > 1.

Using the standard methods of dynamic programming, one
can establish that there exists an optimal program from every
x ∈ X ≡ [0, ∞), and then use it to define a value function,
V : X → R by

V (x) =

∞∑
t=0

ρtu(x̄(t), x̄(t + 1)),

where {x̄(t), ȳ(t)} is an optimal program from x. It can be shown
that V is concave, increasing and continuous on X; see Khan
and Mitra (2007) for details. Furthermore, the Bellman functional
equation holds: this is to say that for each x ∈ X , the following
equation

V (x) = max
x′∈Γ (x)

{u(x, x′) + ρV (x′)}

holds. For ρ ∈ (0, 1), the value function V is the unique continu-
ous function on Z ≡ [0, (1/ad)] which satisfies the Bellman equa-
tion. For each x ∈ X , we define the optimal policy correspondence
(OPC)

h(x) = arg max
x′∈Γ (x)

{u(x, x′) + ρV (x′)}.

Then, a program {x(t), y(t)} from x ∈ X is an optimal program
from x if and only if x(t + 1) ∈ h(x(t)) for t ≥ 0. When the OPC is
a function, we refer to it as the optimal policy function (OPF).

A modified golden rule is a pair (x̂, p̂) ∈ R2
+
such that (x̂, x̂) ∈ Ω

and

u(x̂, x̂) + (ρ − 1)p̂x̂ ≥ u(x, x′) + p̂(ρx′
− x) for all (x, x′) ∈ Ω.

Given a modified golden-rule (x̂, p̂) ∈ R2
+
, we know that x̂ is a

stationary optimal stock. The following proposition establishes
the existence of and the closed-form solution to the modified
golden rule.

Proposition 1 (Khan and Mitra, 2006a, 2007). Define (x̂, p̂) =

(1/(1 + ad), 1/(1 + ρξ )). Then (x̂, x̂) ∈ Ω , where x̂ is independent
of ρ, and satisfies the modified golden rule.

9 For more details, the reader is referred to Khan and Mitra (2006b, 2007).
Other than Fig. 1, we abstain from any diagrammatic rendering of the model:
any reader inclined towards geometry needing additional details regarding the
figure can see Khan and Mitra (2006b, 2013) and their antecedent references.

We summarize below the basic properties of the OPC . Those
properties will be used in the proofs of our main results. To this
end, we describe three regions of the state space:

A = [0, x̂], B = (x̂, k), C = [k, ∞)

where k = x̂/(1 − d). We further subdivide the region B into two
regions as follows:

D = (x̂, 1), E = [1, k)

and define a correspondence, G : X → X , by:

G(x) =

⎧⎪⎨⎪⎩
{(1/a) − ξx} for x ∈ A
[(1/a) − ξx, x̂] for x ∈ D
[(1 − d)x, x̂] for x ∈ E
{(1 − d)x} for x ∈ C

Proposition 2 (Khan and Mitra, 2007). The OPC, h, satisfies h(x) ⊂

G(x) for any x ∈ X.

The graph of the correspondence G is given by the red-shaded
are in Fig. 1.10 This result suggests that the only part of the OPC
for which we do not have an explicit solution is for the middle
region of stocks, given by B = (x̂, k) = D ∪ E. Moreover, if
the discount factor is smaller than the labor-output ratio in the
investment good sector, i.e., ρ < a, with a < 1 guaranteed by the
standing hypothesis ξ > 1, we can fully characterize the OPC . It is
now a function, and is referred to as the check-map: it is defined
as follows

H(x) =

{
(1/a) − ξx for x ∈ [0, 1]
(1 − d)x for x ∈ (1, ∞)

Proposition 3 (Khan and Mitra, 2012, 2020). If ρ < a, then the
OPC, h, is given by H.

3. Exact parametric restrictions for 3-period cycles

In the MNY Theorem, the reduced-form utility function u
is required to be either (i) strictly concave on its domain or
(ii) strictly increasing in its first argument and strictly decreas-
ing in its second argument.11 As explained in Khan and Mitra
(2020), the reduced-form utility function in the RSS model is not
strictly concave in either the first or the second argument. For the
reader’s convenience, we reproduce their formal reasoning here.
Consider x, x̄ with 1 < x < x̄ < k, and (x′, x̄′) = (1 − d)(x, x̄).
Pick (x̃, x̃′) such that x̃ = λx + (1 − λ)x̄ and x̃′

= λx′
+ (1 − λ)x̄′

with any λ ∈ (0, 1). We have (x, x′) ∈ Ω , and (x̄, x̄′) ∈ Ω , and
(x̃, x̃′) ∈ Ω . However, u(x, x′) = u(x̄, x̄′) = u(x̃, x̃′) = 1. Moreover,
for (x, x′) ∈ Ω such that x < 1 − a(x′

− (1 − d)x), u(x, x′) = x, so
u is not strictly decreasing in its second argument. In short, the
two-sector RSS model is not an element in the general class of
optimal growth models considered by the MNY Theorem.

3.1. An exact discount factor restriction

We can now present the first principal result of the paper.

Theorem 1. Let ρ̂ ≡

√
3−1
2 . (i) If ρ < ρ̂, then there exist a ∈ (0, 1)

and d ∈ (0, 1) such that the RSS model with parameters (a, d, ρ) has
an OPF which generates a 3-period cycle. (ii) If the RSS model with
parameters (a, d, ρ) has an OPF which generates a 3-period cycle,
then ρ < ρ̂.

10 For details on this, and the check-map VMD specified in Proposition 3,
see Khan and Mitra (2006a, 2013).
11 For (i), see Assumption A5 in Mitra (1996); for (ii), see Assumption A2 in
Nishimura and Yano (1996).
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Fig. 1. The optimal policy correspondence.

We invite the reader to compare Theorem 1 with Theorem MNY
that began this exposition. In particular, it is worth emphasiz-
ing that the least upper bound on the discount factor we have
identified ρ̂ is strictly smaller than the ρ̄ that they identified for
a general class of growth models. Our theorem shows how the
exact factor restriction can be further sharpened when specific
structures of a model are imposed.

We turn to a sketch of the proof. The proof of part (i) consists
of two essential steps. First, for a given discount factor ρ < ρ̂,
we pick a depreciation rate d sufficiently close to zero and a
corresponding technological parameter a such that the resulting
check map has a 3-period cycle starting from the bottom (1,
H(1), and H2(1)). Next, we prove that with d sufficiently close to
zero, the check map is indeed the optimal policy function for the
two-sector RSS model (a, d, ρ).

The proof of part (ii) is more involved. First, for any 3-period
cycle, we can show that the three periodic points are in the three
regions A, B, and C , respectively; see Fig. 1. Second, exploiting the
3-period cyclical structure and the slope of the value function, we
obtain the necessary conditions concerning ρ, ξ , and d. Last, the
upper bound of the discount factor turns out to be solution to an
optimization problem which arises from the necessary conditions
for 3-period cycles.

To highlight the difference between an exact and a non-exact
discount factor restriction, we reproduce Proposition 9 in Khan
and Mitra (2020).

Proposition 4 (Khan and Mitra, 2020). (i) If 0 < ρ < (1/3), then
there exist a ∈ (0, 1) and d ∈ (0, 1) such that the RSS model with
parameters (a, d, ρ) has an OPF which generates a 3-period cycle.
(ii) If the RSS model with parameters (a, d, ρ) has an OPF which
generates a 3-period cycle, then ρ < (1/2).

Since 1/3 < ρ̂ < 1/2, our discount factor restriction as in
Theorem 1 is ‘‘exact’’ as opposed to that in the above result: the
theorem imposes the least upper bound on the discount factor for
the existence of 3-period cycles: for any discount factor below ρ̂,
we can construct an RSS model whose OPF generates a 3-period
cycle, and for any RSS model whose OPF generates a 3-period
cycle, the discount factor has to be below ρ̂.

3.2. An exact region of parameters concerning labor productivity and
depreciation

We can now present the second principal result of the paper.
It establishes an exact region of two parameters concerning labor
productivity and depreciation for the existence of 3-period cycles.
To the best of the authors’ knowledge such an ‘‘exact’’ region has
not been presented before in optimal economic dynamics.12

Theorem 2. (i) If (ξ − 1)(1 − d) ≥ 1, then there exists ρ∗ such
that the RSS model with parameters (a, d, ρ∗) has an OPF which
generates a 3-period cycle. (ii) If the RSS model with parameters
(a, d, ρ∗) has an OPF which generates a 3-period cycle, then (ξ −

1)(1 − d) ≥ 1.

Part (i) of the theorem immediately follows from Proposition 5
in Khan and Mitra (2020) by choosing ρ < a. Part (ii) of the
theorem follows from Lemma 5. Theorem 2 concerns a region of
the two parameters for 3-period cycles, an exercise that cannot
be conducted for a general class of growth models in which the
discount factor is the only numerical parameter. It is also worth
pointing out that we characterize the exact region through the
parameters ξ and d : as in Khan and Mitra (2013, Figure 8), an
alternative characterization is given by

(ξ − 1)(1 − d) ≥ 1 ⇐⇒ (1/a) ≥ 1 + (1 − d) + (1 − d)−1.

We now show how Theorem 2 straightforwardly yields Propo-
sition 6 and 7 in Khan and Mitra (2020).

Corollary 1. (i) Let 0 < a < (1/3). Then, there exist ρ ∈ (0, 1)
and d ∈ (0, 1) such that the RSS model with parameters (a, d, ρ) has
an OPF which generates a 3-period cycle. (ii) If the RSS model with
parameters (a, d, ρ) has an OPF which generates a 3-period cycle,
then a < (1/3).

12 Proposition 8 in Khan and Mitra (2020) provides a similar result for the
existence of the second iterate of the optimal policy function being turbulent
but the underlying idea of an ‘‘exact’’ region of restrictions seems to have been
missed: in any case it is neither elaborated nor given any salience.
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This corollary is a counterpart of the exact discount factor
restriction for the technological parameter, a. The cutoff (1/3) can
be easily derived from the region for two parameters, (ξ −1)(1−

d) ≥ 1.13 It should, however, be pointed out that the region
imposes no restriction on the depreciation rate, d, per se. In fact,
any 0 < d < 1 can be compatible with optimal 3-period cycles.

Remark 1. We state our Theorems 1 and 2 for 3-period cycles
generated by an OPF. Since our proofs do not rely on h being a
function, if an OPC, which is not an OPF, generates a 3-period
cycle, then we still must have ρ < ρ̂ and (ξ − 1)(1 − d) ≥ 1.14

4. Concluding remarks

In terms of a summary statement that connects to chaotic
dynamics and to the epigraphs, this paper reports two results
that pertain to the existence of 3-period cycles. It obtains an exact
discount factor restriction for the two-sector RSS model different
from that obtained in the MNY Theorem for a general class of
models. It is not a ‘‘universal constant’’ but firmly tethered to
a model of optimal growth, example if one prefers, that is on
its way to attaining a canonical status. Furthermore, the exact
discount factor restriction can be extended to an exact region
delineated by labor productivity and depreciation, two additional
parameters of the RSS model that are uniquely its own. In terms
of the general class of models that MNY work with, as well as the
ones Mitra–Sorger do for the rationalizability-of-particular-maps
variant, the discount factor is the only numerical parameter. Our
result then goes beyond the singularity of the discount factor in
the general setting and brings out how exact parametric restric-
tions can be concretized more generally in a specific instance of
theory of intertemporal resource allocation.

We conclude with two further remarks. There has been a
recent revival of interest in the two-sector Robinson–Shinkai–
Leontief (RSL) model of optimal growth, which nests the RSS
model in this paper as a special case (Deng et al., 2019; Deng
and Fujio, 2020). In contrast to the RSS model, if capital is also
required to produce the investment good, then the monotonicity
conditions of the reduced-form utility in Nishimura and Yano
(1996) are met and thus their discount factor restriction applies.
It nevertheless remains an open question how to characterize the
exact discount factor restriction in the RSL model. Second, as far
as complicated dynamics is concerned, one can go considerably
beyond the Li–Yorke condition. In the context of the RSS model, as
already stated above in Footnote 12, Khan and Mitra (2020) have
provided (non-exact) discount factor restriction for the second
iterate of the optimal policy function being turbulent. Their result
opens a new door for inquiry: it leads one to ask for parametric
restrictions pertaining to odd-period cycles or indeed, other alter-
native representations of complicated dynamics. We leave these
questions for future investigation.

5. Proofs of the results

In this section, we turn to the proofs of Theorems 1 and 2. We
begin with four preliminary lemmata. The first is a collection of
several known results on the properties of the optimal policy of
the RSS model taken from Khan and Mitra (2007, 2012, 2020) and
reproduced here for the reader’s convenience. The second is one
of the three canonical cases of the 2-sector RSS model and whose
geometry is considered in Khan and Mitra (2013, Figure 8).

13 A simple proof is offered in Section 5.
14 We thank our anonymous referee for raising this question. For a more
detailed elaboration, see Remark 2 in Section 5.

Lemma 1. The optimal policy correspondence h has the following
properties:

(1) If x̂ ∈ h(x) for some x ∈ B, then x̂ ∈ h(x) for every x ∈ B.
(2) If x̂ ∈ h(x) for some x ∈ (x̂, k), then V ′

−
(x̂) ≥ (a/ρ).

(3) If ρξ < 1, then for every x ∈ (x̂, k), x̂ /∈ h(x).
(4) If ρξ > 1, then for every x ∈ (x̂, k), h(x) = {x̂}.
(5) If V ′

+
(H(x)) ≤ a/ρ for some x ∈ B, then H(x) ∈ h(x).

(6) If V ′
−
(x̂) < (a/ρ) and V ′

+
(1 − d) > (a/ρ), then there exist m

and n satisfying x̂ < m < 1 < n < k such that the following
conditions hold:
(a1) V ′

+
(H(x)) ≤ (a/ρ) for all x ∈ (x̂,m] ∪ [n, k);

(a2) V ′
+
(H(x)) > (a/ρ) for all x ∈ (m, n);

(b1) H(m) = H(n) ∈ h(x) for all x ∈ [m, n];
(b2) H(x) ∈ h(x) for all x ∈ (x̂,m] ∪ [n, k);
(c) V is linear on [m, n] with V ′(x) = a(1 − d) for all x ∈

(m, n).
(7) If h(x̃) = H(x̃) for some x̃ ∈ (x̂, 1], then h(x) = H(x) for all

x ∈ [x̂, x̃].

Proof. (1), (2), (3), and (4) are Lemmata 4 and 6 Propositions
3 and 4 and Remark (i) in Khan and Mitra (2007). (5) and (6)
are Lemma 1 and Proposition 6 in Khan and Mitra (2012). (7) is
Lemma 6 in Khan and Mitra (2020). ■

Lemma 2. If (ξ − 1)(1 − d) = 1, then the check map H has a
3-period cycle: 1, (1 − d), (1/a) − ξ (1 − d).

Proof. Since (ξ − 1)(1 − d) = 1, we have:

H(1) = (1 − d)
H2(1) = H(1 − d) = (1/a) − ξ (1 − d) = 1/(1 − d) > 1
H3(1) = H(H2(1)) = (1 − d)[(1/a) − ξ (1 − d)] = 1

⎫⎬⎭
where H is the check map. The details of the last line of the
equation above are as follows:

H3(1) = (1 − d)[(1/a) − ξ (1 − d)]
= (1 − d)(1/a) − ξ (1 − d)2

= (1 − d)(1/a) − (1 − d)[1 + (1 − d)]
= (1 − d)[(1/a) − (1 − d) − 1]
= (1 − d)(ξ − 1) = 1

where the third and the fifth equality follow from (ξ −1)(1−d) =

1.
Therefore, H has a 3-period cycle: 1, (1 − d), (1/a) − ξ (1 −

d). ■

Next, we turn to a routine arithmetical consequence.

Lemma 3. If ρ3ξa(1−d)2−ρ+a < 0, then ξ (1−d)ρ2
+ξρ−1 > 0

Proof. We have

g(ρ) ≡ ρ3ξa(1 − d)2 − ρ + a
= ρ3ξa(1 − d)2 − ξaρ + ξaρ − ρ + a
= ρaξ [ρ2(1 − d)2 − 1] − ρ(1 − aξ ) + a
= ρaξ [ρ2(1 − d)2 − 1] − ρa(1 − d) + a
= ρaξ [ρ2(1 − d)2 − 1] − a[ρ(1 − d) − 1]
= [ρ(1 − d) − 1]{ρaξ [ρ(1 − d) + 1] − a}.

Since ρ(1 − d) − 1 < 0, and we know g(ρ) < 0, we have

ρaξ [ρ(1 − d) + 1] − a > 0 H⇒ ξ (1 − d)ρ2
+ ξρ − 1 > 0,

to complete the verification. ■
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Next, we turn to a result on a lower bound on the left-hand
derivative of the value function when the capital stock lies in the
intervals designated by region B in Fig. 1.

Lemma 4. V ′
−
(x̂) ≥ (a/ρ) if and only if x̂ ∈ h(x) for some x ∈ (x̂, k)

Proof. The ‘‘if’’ part follows (2) of Lemma 1. So we prove the
‘‘only if’’ part. Suppose V ′

−
(x̂) ≥ (a/ρ), and let x ∈ (x̂, k) be

given. Then we have x̂ = (1 − d)[x̂/(1 − d)] > (1 − d)x, and
a[x̂ − (1 − d)x] < a[x̂ − (1 − d)x̂] = adx̂ = ad/(1 + ad) < 1.
Further, we have:

1 − a[x̂ − (1 − d)x] = 1 − a[x̂ − (1 − d)x̂] + a(1 − d)(x − x̂)
= x̂ + a(1 − d)(x − x̂)
< x̂ + (x − x̂)
= x

where the inequality follows from ξ > 1. Thus, there is ε > 0,
such that for all z ∈ I ≡ (x̂ − ε, x̂ + ε), we have (x, z) ∈ Ω and
{1 − a[z − (1 − d)x]} < x, so that:

u(x, z) = 1 − a[z − (1 − d)x]

Define F (x) = {z : (x, z) ∈ Ω}, and for z ∈ F (x), define:

W (z) = u(x, z) + ρV (z)

Clearly, W is concave on its domain. For z ∈ I , we have:

W (z) = 1 − az + a(1 − d)x + ρV (z)

Since x̂ ∈ I , we obtain:

W ′

+
(x̂) = −a + ρV ′

+
(x̂) ≤ 0 (1)

the inequality in (1) following from V ′
+
(x̂)p̂ < a/ρ (see Eq. (19)

in Khan and Mitra, 2007). And, we can obtain:

W ′

−
(x̂) = −a + ρV ′

−
(x̂) ≥ 0 (2)

the inequality in (2) following from V ′
−
(x̂) ≥ (a/ρ).

Now for all z ∈ F (x) with z > x̂, we have:

W (z) − W (x̂) ≤ W ′

+
(x̂)(z − x̂) ≤ 0

by using concavity ofW and (1). Similarly, for z ∈ F (x) with z < x̂,
we have:

W (z) − W (x̂) ≤ W ′

−
(x̂)(z − x̂) ≤ 0

by using the concavity of W and (2). Thus, we have W (z) ≤ W (x̂)
for all z ∈ F (x). This means:

max
(x,z)∈Ω

[u(x, z) + ρV (z)] = u(x, x̂) + ρV (x̂)

Since the left-hand side expression in the equation above is V (x)
by the optimality principle, we have:

V (x) = u(x, x̂) + ρV (x̂)

This means that x̂ ∈ h(x). ■

We can now finally turn to the proof of Theorem 1. We begin
with the proof for part (i) of the theorem.

Proof of Theorem 1 Part (i). We break up the proof into two
separate steps.

Step 1. For any d ∈ (0, 1), we can define:

ξ (d) = 1 +
1

(1 − d)
> 1, a(d) =

1
ξ (d) + (1 − d)

,

ξ (d) =
1

a(d)
− (1 − d),

so that a(d) ∈ (0, 1) and (ξ (d) − 1)(1 − d) = 1. Consider for any
given d ∈ (0, 1), the function:

f (r) = ξ (d)(1 − d)r2 + ξ (d)r − 1 for all r ∈ R (3)

Clearly f (0) = −1 and f (r) → ∞ as r → ∞. So, there is some
r̂(d) > 0 such that f (r̂(d)) = 0. Since f is increasing for r ≥ 0, this
solution is unique. It is given by:

r̂(d) =
−ξ (d) +

√
ξ (d)2 + 4ξ (d)(1 − d)

2ξ (d)(1 − d)
Note that as d → 0, we have ξ (d) → 2. Using this in the equation
above, we infer that as d → 0, we must have r̂(d) converge to
r̂ ≡

−2+
√
12

4 = ρ̂ =

√
3−1
2 .

Since ρ < ρ̂ < (1/2), we can choose d′
∈ (0, 1), with d′

sufficiently close to zero, such that with ξ (d′) and a(d′) defined
as above, we will have ρ̂ξ (d′) < 1, and ρ < r̂(d′). We fix this
d′ in what follows and (to simplify notation) call it d. The corre-
sponding ξ (d) is called ξ , and the corresponding a(d) is called a.
To summarize, we now have (a, d), such that ξ = (1/a)− (1− d),
ξ ρ̂ < 1, (ξ − 1)(1− d) = 1, and ρ < r̂(d). According to Lemma 2,
(ξ − 1)(1 − d) = 1 implies that the check map H has a 3-period
cycle: 1, (1 − d), (1/a) − ξ (1 − d). It remains to show that under
condition ρ < r̂(d), the optimal policy function for the RSS model
(a, d, ρ) is given by H , which generates a period three cycle.

Step 2. Suppose the check map is not optimal. We assert that
there exists a flat-bottom map (with a narrower bottom than
the pan map VGG1D as illustrated in Fig. 1) which is optimal.15
Since ρξ < ρ̂ξ < 1, we have x̂ /∈ h(x) for any x ∈ (x̂, k) by
(3) of Lemma 1 which further implies V ′

−
(H(k)) = V ′

−
(x̂) < a/ρ

by Lemma 4. Since the check map is not optimal, we also have
V ′

+
(H(1)) > a/ρ by (5) of Lemma 1. Then by (6) of Lemma 1,

there exist m, n satisfying x̂ < m < 1 < n < k, such that H(x) ∈

h(x) for all x ∈ (x̂,m] ∪ [n, k), H(m) = H(n) ∈ h(x) for all x ∈

[m, n], and V is linear on [m, n] with V ′(x) = a(1 − d) for all x ∈

(m, n).
We now consider an optimal program from s = (1−d) = H(1).

Clearly, h(s) = (1/a) − ξ s = H2(1), so that the proof of Lemma 2
implies that h(s) ∈ (k, ∞). Thus, h2(s) = (1 − d)h(s) = H3(1) = 1,
so that h2(s) ∈ (m, n).

Similarly, by considering an optimal program from s′ > s, and
sufficiently close to s, one has h(s′) = (1/a) − ξ s′ ∈ (k, ∞), and
h2(s′) = (1 − d)h(s′) ∈ (m, n). Thus, we have:

V (s) = s + ρ + ρ2V (1) and

V (s′) = s′ + ρ + ρ2V (1 − ξ (1 − d)(s′ − s)),

which leads to
V (s′) − V (s)

(s′ − s)
= 1 − ρ2ξ (1 − d)

[V (1) − V (1 − ξ (1 − d)(s′ − s))]
ξ (1 − d)(s′ − s)

Letting s′ → s in the equation above, we get:

V ′

+
(s) = 1 − ρ2ξ (1 − d)V ′

−
(1)

Since we know V ′(x) = a(1− d) for all x ∈ (m, n), we must have
V ′

−
(1) = a(1 − d), and using this in the equation above, we get:

V ′

+
(s) = 1 − ρ2ξa(1 − d)2

Since we are supposing that the check map is not optimal,
V ′

+
(s) = V ′

+
(1 − d) = V ′

+
(H(1)) > (a/ρ) by (5) of Lemma 1. Using

this in the equation above, we get:

a/ρ < 1 − ρ2ξa(1 − d)2,

or equivalently, ρ3ξa(1 − d)2 − ρ + a < 0,

15 This closely follows from the proof of Theorem 3 in Khan–Mitra (Khan and
Mitra, 2012).
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which by Lemma 3 implies

ξ (1 − d)ρ2
+ ξρ − 1 > 0.

Using the notation introduced in (3), f (ρ) > 0. This implies
ρ > r̂(d), which contradicts ρ < r̂(d) [recalling that we agreed to
call d′ in ρ < r̂(d) as d]. Thus, the check map is optimal, and the
3-period cycle (1, (1−d), (1/a)− ξ (1−d)) is an optimal 3-period
cycle.

This completes the proof. ■

The proof of Part (ii) of Theorem 1 requires a necessary con-
dition for 3-Period Cycles. The interested reader might want to
track the argumentation of the proof through Fig. 1.

Lemma 5. If the optimal policy function generates a 3-period cycle,
then

(ξ − 1)(1 − d) ≥ 1

Proof. Denote the optimal policy function by h, and the 3-
period cycle stocks by α, β, γ . Without loss of generality we may
suppose that α < β < γ . Note that none of the three points can
be equal to x̂, since x̂ is a fixed point of h. Similarly, none of the
points can be equal to k, since h(k) = x̂. In view of this, it will help
in our exposition if we define the sets A′

= [0, x̂) and C ′
= (k, ∞).

There are then two possibilities to consider: (i) β = h(α);
(ii) γ = h(α). In case (i), we must have α ∈ A′, since β > α.
Consequently, β = (1/a) − ξα, and γ ̸= h(α). Thus, we must
have γ = h(β), and since γ > β , we must have β ∈ A′. But,
since β = (1/a) − ξα with α ∈ A′, we must have β ∈ B ∪ C ′, a
contradiction. Thus, case (i) cannot occur.

Thus case (ii) must occur. In this case, since γ > α, we must
have α ∈ A′. Consequently, γ = (1/a) − ξα, and β ̸= h(α).
Thus, we must have β = h(γ ); it also follows that we must have
α = h(β). Since β < γ , we must have γ ∈ B∪ C ′

; similarly, since
α < β , we must have β ∈ B ∪ C ′.

We claim now that γ ∈ C ′. For if γ < k, then, we must have
x̂ < β < γ < k. But, then, γ ∈ (x̂, k), and so β = h(γ ) implies that
β < x̂, a contradiction. Thus, the claim that γ > k is established.
But, then, we can infer that β = (1 − d)γ .

We claim, next, that β ∈ B. Since β ∈ B ∪ C ′, we must
have β > k if the claim is false. But, then, we can infer that
α = h(β) = (1 − d)β > x̂, a contradiction, since α ∈ A′. Thus,
our claim that β ∈ B is established. Since α = h(β), we can also
infer that α ≥ (1 − d).

To summarize our findings so far, we have:

(i) γ > k > β > x̂ > α ≥ (1 − d) and
(ii) γ = (1/a) − ξα; β = (1 − d)γ

Moreover, since, β = (1− d)γ , γ = (1/a)− ξα, and α = h(β),
we have

β = (1 − d)[1/a − ξh(β)] (4)

We consider two cases: (i) β ∈ (x̂, 1); (ii) β ∈ [1, k).
We first consider β ∈ (x̂, 1). Then by Proposition 2, h(β) ≥

(1/a)− ξβ . By using (4), we have β ≤ (1− d)[1/a− ξ (1/a− ξβ)]
which leads to β ≥

(ξ−1)(1−d)
a[(1−d)ξ2−1]

. Since β < 1, using the equation
above we obtain 1 ≥

(ξ−1)(1−d)
a[(1−d)ξ2−1]

which can be simplified to be
(ξ − 1)(1 − d) ≥ 1.

We then consider β ∈ [1, k). By Proposition 2, h(β) ≥ (1−d)β .
By using (4), we have β ≤ (1 − d)[1/a − ξ (1 − d)β] which
leads to β ≤

1−d
a(1+ξ (1−d)2)

. Since β ≥ 1, using the equation
above we obtain 1 ≤

1−d
a(1+ξ (1−d)2)

which again can be simplified
to be (ξ − 1)(1 − d) ≥ 1. Thus, we have obtained the desired
conclusion. ■

With Lemma 5 in hand, we can turn to the proof of Part (ii) of
Theorem 1.

Proof of Theorem 1: Part (ii). We break up the proof into five
separate steps.

Step 1. Denote the optimal policy function by h, and the 3-
period cycle stocks by α, β, γ . Without loss of generality we may
suppose that α < β < γ . Following the argument before Eq. (4)
in the proof of Lemma 5, we have:

(i) γ > k > β > x̂ > α ≥ (1 − d) and
(ii) γ = (1/a) − ξα; β = (1 − d)γ

Step 2. We claim now that V ′
−
(x̂) < (a/ρ). For, if V ′

−
(x̂) ≥ (a/ρ),

then by Lemma 4 there is some x ∈ B, such that x̂ ∈ h(x). And,
by (1) of Lemma 1, we then have x̂ ∈ h(x) for all x ∈ B. Since h
is a policy function, we must have h(x) = x̂ for all x ∈ B. But, we
have already noted above that β ∈ B, h(β) = α, and α < x̂, so
that α /∈ B. This establishes V ′

−
(x̂) < (a/ρ).

Our next claim is that V ′
+
(α) ≤ (a/ρ). For suppose V ′

+
(α) >

(a/ρ). Then, we have V ′
+
(1 − d) > (a/ρ), and by (6) of Lemma 1,

there exist m, n satisfying x̂ < m < 1 < n < k, such that
H(x) ∈ h(x) for all x ∈ (x̂,m] ∪ [n, k) and H(m) = H(n) ∈

h(x) for all x ∈ [m, n], and since h is a policy function, we have
h(x) ≥ H(n) for all x ∈ B using the definition of H . Since β ∈ B,
and α = h(β), we must therefore have α ≥ H(n). By the concavity
of V , it follows that V ′

+
(H(n)) ≥ V ′

+
(α) > (a/ρ). Again, by (6) of

Lemma 1, we know V ′
+
(H(x)) ≤ (a/ρ) for all x ∈ (x̂,m] ∪ [n, k),

which leads to a contradiction and establishes V ′
+
(α) ≤ (a/ρ).

Step 3. Using the fact that α < x̂, and h(α) = γ = H(α) > k,
we have V (α) = α + ρ + ρ2V (β). For ε > 0 and small enough
to ensure that α + ε < x̂ and H(α − ε) > k, we also have
V (α + ε) = (α + ε) + ρ + ρ2V (H2(α + ε)). Thus, we get:

V (α + ε) − V (α) = ε + ρ2
[V (H2(α + ε)) − V (β)]

= ε − ρ2
[V (β) − V (β − (1 − d)ξε)]

Dividing through in the equation above by ε, and then letting
ε → 0, we obtain:

V ′

+
(α) = 1 − ρ2(1 − d)ξV ′

−
(β) (5)

This is the key relationship that will be used in the next Step.

Step 4. We now consider two cases separately: (i) β ∈ (1, k); (ii)
β ∈ (x̂, 1].

In case (i), define y = 1 − a[α − (1 − d)β]. Then, since α ≥

(1−d)β , we have y ≤ 1 < β . Also, y > 1−aα > 1−ax̂ > 0. Thus,
u(β, α) = y, and since α = h(β), we can write V (β) = y+ ρV (α).
Pick ε > 0 and small enough to ensure that (β − ε) > 1, and
y − ε > 0. Now, define y′

= y − a(1 − d)ε. Then, y′ > 0,
and y′ < 1 < (β − ε). Also, y′

+ a[α − (1 − d)(β − ε)] =

y′
+a[α − (1−d)β]+a(1−d)ε = y+a[α − (1−d)β] = 1. Finally,

we have [α − (1 − d)(β − ε)] = [α − (1 − d)β] + (1 − d)ε > 0.
Thus, (β − ε, α) ∈ Ω , and u(β − ε, α) ≥ y′. We can then write
V (β − ε) ≥ y′

+ ρV (α). Thus, we get:
V (β) − V (β − ε)

ε
≤ a(1 − d)

Now, letting ε → 0, we obtain V ′
−
(β) ≤ a(1 − d). Since we have

shown V ′
+
(α) ≤ (a/ρ), using (5), we further obtain:

(a/ρ) ≥ V ′

+
(α) = 1 − ρ2(1 − d)ξV ′

−
(β) ≥ 1 − ρ2aξ (1 − d)2

which can be simplified to ρ3aξ (1 − d)2 − ρ + a ≥ 0. Following
the proof of Lemma 3, we obtain ξ (1 − d)ρ2

+ ξρ − 1 ≤ 0. That
is, using the notation introduced in (3), f (ρ) ≤ 0. This implies:

ρ ≤ r̂ =
−ξ +

√
ξ 2 + 4ξ (1 − d)

2ξ (1 − d)
(6)
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We will now show that condition (6) also holds in case (ii),
that is when x̂ < β ≤ 1. It is convenient to subdivide this case
into two subcases: (a) h(β) > H(β), (b) h(β) = H(β). In case
(a), we have x̂ > α = h(β) > H(β). Consequently, if ε > 0
is chosen sufficiently small, it is possible to obtain a terminal
stock of α, starting from (β − ε). To verify this formally, define
δ = h(β) − H(β). Note that 0 < δ < h(β) = α < x̂ < β . Then, we
can write:

a[α − (1 − d)β] = a[H(β) + δ − (1 − d)β]

= a[(1/a) − ξβ + δ − (1 − d)β]

= aδ + a[(1/a) − ξβ − (1 − d)β]

= aδ + 1 − aξβ − a(1 − d)β

and y ≡ 1− a[α − (1− d)β] = aξβ + a(1− d)β − aδ = β − aδ >
β(1 − a) > 0.

Pick ε > 0 with ε sufficiently small so that a(1 − d)ε < y and
[1− a(1− d)]ε < aδ. Defining y′

= y− a(1− d)ε, we have y′ > 0
and y′

= β − aδ − a(1 − d)ε < β − ε. Further,

y′
+ a[α − (1 − d)(β − ε)]

= y − a(1 − d)ε + a[α − (1 − d)(β − ε)]
= y + a[α − (1 − d)β] = 1

and [α−(1−d)(β−ε)] = [α−(1−d)β+(1−d)ε] > [α−(1−d)β] ≥

0. Thus, (β − ε, α) ∈ Ω and u(β − ε, α) ≥ y′
= y− a(1− d)ε. We

can now write:
V (β) = y + ρV (α)
V (β − ε) ≥ y′

+ ρV (α) = y − a(1 − d)ε + ρV (α)

}
which yields V ′

−
(β) ≤ a(1 − d). Now one can follow exactly the

steps in case (i) to obtain condition (6).
We now consider subcase (b) of (ii), where x̂ < β ≤ 1 and

h(β) = H(β). In this case, we can write:

V (β) = β + ρV (α)
V (β − ε) = (β − ε) + ρV ((1/a) − ξ (β − ε))

}
where ε > 0 is small enough to ensure that x̂ < β − ε. Note
that the second line of the equation above follows from (7) of
Lemma 1.16 Then the equation above yields V ′

−
(β) = 1−ρξV ′

+
(α),

and using (5), we obtain V ′
−
(β) = (1 − ρξ )/[1 − ρ3ξ 2(1 − d)].

Again, since we have shown V ′
+
(α) ≤ (a/ρ), using (5), we obtain:

(a/ρ) ≥ V ′

+
(α) = 1 −

[
ρ2(1 − d)ξ (1 − ρξ )
1 − ρ3ξ 2(1 − d)

]
which can be simplified to ρ3aξ (1 − d)2 − ρ + a ≥ 0. Now one
can follow the steps in case (i) to obtain condition (6).

Step 5. Consider the following constrained maximization prob-
lem, subsequently to be referred to as CMP:
Maximize r
subject to 1 − sr − s(1 − q)r2 ≥ 0

(1 − q) ≥ 0
(s − 1)(1 − q) − 1 ≥ 0
(q, r, s) ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (CMP)

which has a unique solution (q̄, r̄, s̄) = (0, ρ̂, 2).17 Since the RSS
model (a, d, ρ) has an optimal policy function hwhich generates a
period three cycle, we know from Lemma 5 that (ξ −1)(1−d) ≥ 1
Thus, using the definition of r̂ in condition (6), (q, r, s) = (d, r̂, ξ )
satisfies the constraints of the optimization problem above. Since
d > 0, (q, r, s) ̸= (q̄, r̄, s̄). Thus, we must have r̂ < ρ̂, and
using Condition (6), we have ρ < ρ̂, proving the part (ii) of the
Theorem. ■

16 For some monotone properties of the optimal policy function see Lemma
4 – 6 in Khan and Mitra (2020).
17 For details of the solution, see Appendix.

Remark 2. The proof of this theorem does not rely on h being
a function. In particular, we can still show that V ′

+
(α) ≤ (a/ρ) in

Step 2 of the proof of part (ii) if h is not an OPF. To see this, we
first claim V ′

−
(x̂) < (a/ρ). Suppose on the contrary V ′

−
(x̂) ≥ (a/ρ).

Consider h(β) is not a singleton: α, x̂ ∈ h(β) and α ̸= x̂. According
to (3) and (4) of Lemma 1, ρ = 1/ξ . Since we know x̂ ∈ h(x) for
all x ∈ B, V (x) = u(x, x̂)+ρV (x̂) for x ∈ B. For x ∈ ( k

(1−d)n , k
(1−d)n+1 ]

(n = 0, 1, 2, . . .), V (x) =
1−ρn+1

1−ρ
+ ρn+1V ((1 − d)n+1x). For x < x̂,

V (x) = x + ρV ( 1a − ξx). Based on the value function and given
ρ = 1/ξ , we can show h(β) = [x0, x̂] with (1/a) − ξx0 ≤ k.
Since γ > k, α < x0 and thus α is not optimal, leading to
a contradiction. We then claim V ′

+
(α) ≤ (a/ρ). For suppose

V ′
+
(α) > (a/ρ). We follow the same argument as in the proof

and consider instead α ∈ h(β) and α < H(n). Given concavity of
V , we must have [α,H(n)] ⊂ h(β). Thus, for any x ∈ [α,H(n)],
V (β) = 1−a(x− (1−d)β)+ρV (x), which implies V ′

+
(α) = (a/ρ).

This contradicts to the supposition V ′
+
(α) > (a/ρ).

Proof of Theorem 2. The straightforward proof of Part (i) is al-
ready furnished after the statement of the theorem; and it is also
indicated there that the proof of Part (ii) is a direct consequence
of Lemma 5. ■

We conclude this subsection with a Proof of Corollary 1.

Proof of Corollary 1. The proof follows closely from the Proofs
of Propositions 6 and 7 in Khan and Mitra (2020).

Proof of part (i): Let 0 < a < 1/3. Define

d(a) = 1 −
2

1/a − 1 +
√
(1/a − 1)2 − 4

.

Since 0 < a < 1/3, (1/a−1)2−4 > 0. Then, d(a) is a real number.
Since 1/a > 1, d(a) < 1. Also, d(a) > 0 because 1/a − 1 > 2.
Define ξ (a) = 1/a − (1 − d(a)). We have

(1 − d(a))(ξ (a) − 1) = 1.

Pick d = d(a). Then we have (1−d)(ξ−1) = 1. It then follows from
Theorem 2 that there exists ρ such that (a, d, ρ) is an RSS model,
which has an optimal policy function that generate a 3-period
cycle.

Proof of part (ii): According to Theorem 2, if the optimal policy
function generates a 3-period cycle, then (1−d)(ξ −1) ≥ 1, which
implies

1
a

≥
1

1 − d
+ (1 − d) + 1 > 3 H⇒ a < 1/3.

This completes the proof. ■

Appendix. An optimization problem

This Appendix concerns the optimization problem specified as
CMP in Step 5 of the proof of Part (ii) of Theorem 1. Define the
constraint set of CMP as

C = {(q, r, s) ≥ 0 : 1 − sr − sr2(1 − q) ≥ 0,
(1 − q) ≥ 0, (s − 1)(1 − q) − 1 ≥ 0}

Note that C is not bounded above in s, and so Weierstrass’
theorem cannot be applied to ensure the existence of a solution
to CMP. However, the following variation of Weierstrass theorem
can be used. Define:

C ′
= {(q, r, s) ∈ C : s ≤ 3}

Note that (q̄, r̄, s̄) = (0, ρ̂, 2) belongs to C ′, where ρ̂ = [(
√
3 −

1)/2]. Further, C ′ is a closed and bounded subset of R3. Thus,
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by Weierstrass theorem, there is a solution (q′′, r ′′, s′′) to the
problem:

Maximize r
subject to (q, r, s) ∈ C ′

}
Thus, for all (q, r, s) ∈ C ′, we have r ≤ r ′′. And, for (q, r, s) ∈ C\C ′,
we have s > 3, and so by the first constraint in C , we must have
r < (1/3). Thus, r < ρ̂ ≤ r ′′, since ρ̂ > 0.36. To summarize, for
all (q, r, s) ∈ C , we must have r ≤ r ′′, and so (q′′, r ′′, s′′) solves
problem CMP.

Now consider an arbitrary solution to problem CMP, and call
this (q′, r ′, s′). We will show that (q′, r ′, s′) must be equal to
(q̄, r̄, s̄) = (0, ρ̂, 2). This will establish that (0, ρ̂, 2) is the unique
solution to problem CMP. Note that since (q′, r ′, s′) ∈ C , we must
have q′ < 1, s′ > 1, r ′ < 1, and since (q′, r ′, s′) solves CMP, while
(q̄, r̄, s̄) = (0, ρ̂, 2) ∈ C , we must also have r ′

≥ ρ̂ > 0.
(a) We claim first that the third constraint must be binding:

(s′ − 1)(1 − q′) = 1 (7)

For if (s′ −1)(1−q′) > 1, then we can define (q, r, s) = (q′, r ′, s′ −
ε), where ε > 0 is sufficiently small so that ((s′−ε)−1)(1−q′) > 1.
Then the second and third constraints are satisfied at (q, r, s).
Further,

sr + sr2(1 − q) = s′r ′
+ s′(r ′)2(1 − q′) − εr ′

− ε(r ′)2(1 − q′)
< s′r ′

+ s′(r ′)2(1 − q′) ≤ 1

So, it is now possible to define (q̃, r̃, s̃) with q̃ = q, s̃ = s, and
r̃ > r = r ′ with r̃ sufficiently close to r so that (q̃, r̃, s̃) satisfies
all three constraints of CMP. But this contradicts the optimality
of (q′, r ′, s′).

(b) We claim next that the first constraint must be binding:

s′r ′
+ s′(r ′)2(1 − q′) = 1 (8)

For if s′r ′
+ s′(r ′)2(1 − q′) < 1, then one can define (q, r, s) =

(q′, r ′
+ ε, s′) with ε > 0 sufficiently small so that the first con-

straint is satisfied. Further, the second and third constraints are
clearly satisfied. But this contradicts the optimality of (q′, r ′, s′).

(c) We claim now that:

s′ = 2 (9)

Note that by the third constraint, we must have s′ ≥ 2. So, if (9)
is not satisfied, we must have s′ > 2.

For any s ∈ (2, s′) we can define 1 − q = 1/(s − 1). Then
0 < q < 1, and the second and the third constraints are satisfied.
Also, using (7), and the convexity of the function [s/(s − 1)] for
s > 1, we get:

[sr ′
+ s(r ′)2(1 − q)] − [s′r ′

+ s′(r ′)2(1 − q′)]

= [sr ′
+

s(r ′)2

(s − 1)
] − [s′r ′

+
s′(r ′)2

(s′ − 1)
]

≤ (s − s′)r ′
+ (s − s′)(r ′)2

(−1)
(s − 1)2

= (s − s′)r ′
[1 −

r ′

(s − 1)2
] < 0 (10)

the last line of (10) following from the facts that s > 2, while
r ′ < 1, and (s−s′) < 0. Thus, (q, r ′, s) satisfies the first constraint

with strict inequality

sr ′
+ s(r ′)2(1 − q) < [s′r ′

+ s′(r ′)2(1 − q′)] = 1.

But then, as in part (b) above, one can define (q̃, r̃, s̃) = (q, r ′
+

ε, s) with ε > 0 sufficiently small so that the first constraint
is satisfied. Further, the second and third constraints are clearly
satisfied. But this contradicts the optimality of (q′, r ′, s′). This
establishes claim (9).

(d) Using (7) and (9), we get q′
= 0. Using this, along with (8)

and (9), we get 2r ′
+ 2(r ′)2 = 1. Then, using the fact that r ′ > 0,

we get r ′
= ρ̂, completing the proof. ■
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