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Abstract

In this paper, we offer necessary and sufficient conditions for the presence of odd-period cycles and 
turbulence in a continuous unimodal interval map. The characterizations we present are original both to 
the economic and the mathematical literature, and go beyond existential assertions to easy verifiability. We 
apply our two theorems to six different canonical models in the literature on economic dynamics, all being 
grounded in the fact that their policy functions are given by continuous unimodal maps. An unintended 
outcome of the work presented here is to alert the economics profession to a richer conception of erratic 
and chaotic dynamics, one that goes considerably beyond the 1964-1975 Sharkovsky-Li-Yorke emphasis 
on three-period cycles and on uncountable scrambled sets.
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The notion of chaos does not come from mathematics. It was developed by physicists. Af-
terwards, it gradually spread to computer science and other fields, where it took on slightly 
different meanings. When writing about chaos, a mixture of mathematics and empirical ideas 
cannot be avoided. Many properties are called chaotic, but none can be proved to be chaotic 
because there is no definition of chaos and there will not be any.1 Blanchard (2009)

1. Introduction

Since the introduction of “erratic growth” by Benhabib and Day (1980), and later followed up 
by Day and Shafer (1985) and Nishimura and Yano (1996), there is by now a good professional 
understanding of chaotic dynamics, and of the distinction between the subject’s topological 
and ergodic (statistical) aspects.2 However, as far as the topological aspect is concerned, this 
understanding is largely grounded in the sufficient condition on the existence of three-period 

1 The italics and sentences are the author’s but we have re-arranged them to emphasize that in this work we elaborate 
on, and investigate, only one possible definition of chaos. Blanchard lists five types of chaos and labels them as (i) 
sensitivity, (ii) positive entropy, (iii) Li-Yorke, (iv) Auslander-Yorke, and (v) Devaney. In this paper, we rely on (ii) as 
opposed to the reliance on (iii) in economic dynamics. The interested reader is also referred to Kolyada and Snoha (1997), 
Brown and Chua (1996, 1998) and above all to Ruette (2017) for additional definitions of chaos.

2 For surveys of this literature, see Benhabib’s (2008) Palgrave entry on “chaotic dynamics”; also see Benhabib (1992), 
Majumdar et al. (2000), Dana et al. (2006), and Bhattacharya and Majumdar (2007). In Deng and Khan (2017), the 
authors present a portmanteau theorem that shows the equivalence of several notions of chaos culled from Ruette’s 
authoritative survey.
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cycles furnished by Li and Yorke (1975). To be sure, even though Mitra (2001) went beyond the 
Sharkovsky order and the Li-Yorke condition that it implies to introduce notions of turbulence
and topological entropy in the context of Matsuyama’s (1999) model, these ideas have remained 
somewhat alien than they ought to be in terms of application and use.3 This paper is addressed 
to this weakness in the literature of economic dynamics.

The problematic addressed in this paper is best begun by a discussion of topological entropy
in the language of the everyday. Already in his 1995 text, Clark Robinson noted that topological 
entropy h(f ) of a map f is a non-negative real number, and while “it has a complicated defini-
tion, it can be thought of as a quantitative measurement of the amount of sensitive dependence 
on initial conditions of the map. In fact, it is determined by how many ‘different orbits’ there are 
for a given map (or flow).”4 In yet another text, Brucks and Bruin (2004) elaborate on the idea 
of two orbits being “essentially different,” and they focus on the “resolution” of this difference 
as depending on an arbitrary positive small number ε. In sum, topological entropy involves the 
number of ε-essentially different orbits, and this number grows exponentially fast for a map with 
positive topological entropy.5 It attests to the instability and unpredictability (its “chaoticity” so 
to speak) that is inherent in the system. A map is said to exhibit topological chaos if it has pos-
itive topological entropy. With this intuitive and informal background of topological entropy at 
hand, we turn to the introduction of our results.

In this paper, we report two theorems on topological chaos when a map may not admit a 
three-period cycle and thus the well-known Li-Yorke criterion does not apply. For a class of 
unimodal interval maps, we provide necessary and sufficient conditions for two particular forms 
of topological chaos: the existence of odd-period cycles and turbulence of the second iterate 
of a map. The conditions involve the third iterate of the critical point, the interior fixed point, 
and benchmarks related to two-period cycles, if any, all of which can be easily computed and 
verified. Specifically, the conditions do not involve any global properties of the map, and thus go 
substantially beyond existential assertions to easy verifiability.

Our results build upon the seminal work of Mitra (2001) that identifies for the first time an 
easily verifiable condition for topological chaos.6 His condition is a sufficient condition for tur-
bulence of the second iterate of a map. In a recent paper, Deng and Khan (2018) extend this 
sufficient condition to accommodate a knife-edge case of the third iterate of the critical point 
coinciding with the interior fixed point. The conditions we identify in this paper contribute to 
the existing literature in two ways. First, our conditions are both necessary and sufficient, which 
yield a satisfactory characterization of two particular forms of topological chaos. Second, our 
conditions cover not only turbulence of the second iterate but also odd-period cycles. Since odd-
period cycles and turbulence of the second iterate occupy two consecutive positions in the refined 

3 We note for the reader that the notion of scrambled sets was original to Li and Yorke (1975) and was not available in 
Sharkovsky (1964).

4 See page 84 for the first sentence and page 333 for the second in Robinson (1995).
5 In a slightly more formal vernacular, one that emphasizes the adjective topological instead of the noun entropy, one 

can develop the notion of topological entropy through a tripartite procedure: to define topological entropy of a cover of 
the domain of a continuous map, then that of a map relative to a cover, and finally, the topological entropy of the map 
as the supremum over all covers; see Chapter 3 in the 1998 student text of Pollicott and Yuri. The reader can also look 
forward to Footnote 10.

6 Easy verifiability is one of the signatures of the later work by Tapan Mitra; also see Mitra and Roy (2017, 2022).
3
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Sharkovsky order, the necessary and sufficient conditions and their evident resemblance are a tes-
timony to the importance of the work of Block and Coppel.7

And now we turn from the theorems themselves to the use of these theorems in economic 
dynamics. Towards this end, we turn to what we see as six paradigmatic models devoted to six 
different considerations arising in economic theory, and all leading to continuous unimodal maps 
from an interval to itself. It is remarkable how those maps arise as an instrument of synthesis 
from considerations of political economy, labor supply, innovation and industrial organization, 
and development policy.8 We obtain neat parametric conditions for complicated dynamics for 
each of the six models, underscoring the easy verifiability of our characterization results. This is 
done in Section 3. In Section 2, we present the main theoretical results of the paper, the easily 
verifiable necessary and sufficient conditions for odd-period cycles and turbulence of the second 
iterate. We conclude the paper with some open questions in Section 4 and relegate all the proofs 
to Section 5. Any reader interested in working through them will note that they require sustained 
argumentation.

2. The results: necessary and sufficient conditions

2.1. Preliminaries

We say that f is an interval map if it is a continuous map from a non-degenerate compact 
interval X to itself. A point x ∈ X is called a periodic point of f if there exists a positive integer 
n such that f n(x) = x. An interval map f is said to admit an n-period cycle if there exists x ∈ X

such that n is the smallest positive integer for which f n(x) = x holds. An interval map f is said 
to admit an odd-period cycle if the map admits an n-period cycle for some odd number n > 1. 
Denote by Pn the set of all the interval maps that admit an n-period cycle. A map f is said to 
be turbulent if there exist three points, x1, x2, and x3, in X such that f (x2) = f (x1) = x1 and 
f (x3) = x2 with either x1 < x3 < x2 or x2 < x3 < x1.9 Denote by Tn the set of all the interval 
maps whose n-th iterate is turbulent. We have the following refined Sharkovsky order due to 
Block and Coppel (1986).

Theorem BC. For a non-degenerate compact interval, the following stratification holds with the 
inclusions being strict:

T1 ⊂ P3 ⊂ P5 ⊂ P7 ⊂ · · · ⊂ T2 ⊂ P3·2 ⊂ P5·2 ⊂ P7·2 ⊂ · · · ⊂ T4 ⊂ P3·4 ⊂ P5·4 ⊂ P7·4
⊂ · · · ⊂ T2n ⊂ P3·2n ⊂ P5·2n ⊂ P7·2n ⊂ · · · ⊂ P4 ⊂ P2 ⊂ P1.

7 See Block and Coppel (1986). For the emphasis on two-period cycles, see Coppel (1955) and its application in 
Benhabib and Nishimura (1979a,b) and Mitra and Nishimura (2005).

8 See in sequence Battaglini (2021), Iong and Irmen (2021), Matsuyama (1999), Baumol and Wolff (1992), Deneckere 
and Judd (1992), and Khan and Mitra (2005b).

9 This definition of turbulence is originally due to Block and Coppel (1986) and is explored and exposited in greater 
detail in their book (Block and Coppel, 1992); also see Du (2013) for recent work on the existence of turbulence in the 
sense of Block-Coppel for a class of interval maps. There is a related but different definition of turbulence under which 
a map f is said to be turbulent if f n is turbulent in the sense of Block-Coppel for some positive integer n; see Block 
(1978) and Lasota (1979). For further discussions on the terminology of turbulence, also see Remark 3.28 in Ruette 
(2017). In this paper, we stick to the definition of turbulence as in Block and Coppel (1986) because this definition of 
turbulence facilitates the presentation of a delicate stratification result, from which our main characterization results stem; 
see Theorem BC. We are grateful to an anonymous referee for insisting on this point.
4
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A set S ⊂ X is said to be a scrambled set if for any distinct points x, y ∈ S, we have

lim sup
n→∞

|f n(x) − f n(y)| > 0 and lim inf
n→∞|f n(x) − f n(y)| = 0,

and for x ∈ S and y being a periodic point of f ,

lim sup
n→∞

|f n(x) − f n(y)| > 0.

With these formalities laid on the table, we turn to the operational definition of topological 
chaos adopted in Mitra (2001). For a natural number n and a positive real number ε, a finite set 
E ⊂ X is called (n, ε)-separated, if for every x, y ∈ E, x �= y, there is an integer k : 0 ≤ k < n

such that |f k(x) − f k(y)| ≥ ε. Let s(n, ε) denote the maximal cardinality of an (n, ε)-separated 
set. We define the topological entropy of an interval map f as

ψ(f, I ) = lim
ε→0

lim sup
n→∞

(1/n) log s(n, ε).

An interval map f is said to exhibit topological chaos if it has positive topological entropy.10 We 
now turn to the following result.

Theorem M. The topological entropy of an interval map f is positive if and only if f admits a 
periodic cycle whose period is not a power of 2.

Theorem M, which is originally due to Misiurewicz (1979, 1980), provides a tight connection 
between topological entropy and periodic cycles. With this theorem, one can go considerably 
beyond the three-period cycles to establish the existence of topological chaos. In particular, from 
Theorem BC, if the second iterate of a map is turbulent (an element of T2), then this map admits 
a six-period cycle, and thus, according to Theorem M, exhibits topological chaos. Indeed, we 
will explore two alternative criteria for topological chaos: odd-period cycles and turbulence of 
the second iterate, the two “adjacent” classes of interval maps in Block and Coppel’s refined 
Sharkovsky order. It is known that if a map admits a cycle whose period is not a power of 2, then 
this map has an uncountable scrambled set.11 From Theorem M, this further implies that if a map 
exhibits topological chaos, it has an uncountable scrambled set.12

From now on, we restrict our attention to a family of unimodal interval maps. Let F be the 
set of continuous maps from an interval, [a, b], to itself, with a generic element f , satisfying the 
following two conditions:

(i) There is m in (a,b), with the map f strictly increasing on [a, m] and strictly decreasing on 
[m, b].

10 With this definition at hand, we can turn to what we earlier referred to in Footnote 5 as the topologist’s language of 
the everyday that concerns the tripartite procedure pertaining to the covers of the domain of a continuous map. What now 
needs to be pinned down is that these two definitions of topological entropy unambiguously lead to the same concept. This 
is Proposition 3.8 in Pollicott and Yuri (1998), and the tripartite procedure is quantitatively executed in the definitions 
and formulae in their Section 3.1: we refer the interested reader to these pages.
11 See Proposition 27 in Chapter VI of Block and Coppel (1992).
12 However, it should be noted that an uncountable scrambled set can still be of measure zero, and our results do not 
speak about the well-known issue of the (un)observability of chaos. Chaotic maps can give rise to rather predictable 
dynamics; see Khan and Rajan (2017) as an extension of Nathanson (1976). We thank a referee for his/her emphasis on 
this.
5
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(ii) f (a) ≥ a, f (b) < b, and f (x) > x for all x in (a, m].

There is a unique interior fixed point of f , which is in (m, b), denoted by z. We must have f (x) >
x for all x in (a, z), and f (x) < x for all x in (z, b]. We define the two sets: I ≡ [a, m]; D ≡
[m, b]. Given unimodality, the I, D notation emphasizes that the function is increasing on the 
“left” interval and decreasing on the “right” one. And to be sure, this is without any loss of 
generality in that the results presented below transpose easily as a consequence of unimodality 
to the case where the function is decreasing on the left interval and increasing on the right one, 
and the map has a sink rather than a peak.

Define � ≡ {x ∈ [m, b] : f (x) ∈ [m, b] and f 2(x) = x}. This is the set of the fixed point and 
period-two points, entirely confined to the set D. There is no presumption that � is a finite set.13

The set � is nonempty since there always exists a fixed point in the interior of D, and it belongs 
to �. By the continuity of f , � is closed. Hence, even if � is infinite, μ̄ ≡ max{x ∈ �} and 
μ ≡ min{x ∈ �} are well-defined and belong to �. To ease the presentation and exposition of 
our results, we define the following conditions:

Condition OPC: The function f satisfies f 2(m) < m and f 3(m) < μ.

Condition TUR: The function f satisfies f 2(m) < m and f 3(m) ≤ μ̄.

Naming of the two conditions corresponds to the dynamics that they will imply. We will later 
establish that Condition OPC is necessary and sufficient for the existence of odd-period cycles 
and Condition TUR is necessary and sufficient for turbulence of the second iterate. In the special 
case that there is no 2-period cycle entirely confined to the set D, � is a singleton {z} with 
μ = μ̄ = z, and so both conditions are stated in the case of the fixed point z. We shall then refer 
to these conditions as OPCz and TURz.

2.2. Characterization of odd-period cycles

Cycles of odd period n > 1 play a very important role in the theory of topological chaos. They 
also constitute a striking part of the Sharkovsky order. In this subsection, we provide a complete 
characterization of the odd-period cycles for the class of unimodal maps F . The sufficient condi-
tion for odd-period cycles can be easily obtained through the LMPY theorem in Li et al. (1982). 
We focus on the necessary condition for odd-period cycles. It is more convenient to establish the 
necessary condition first for the case of an n-period cycle with n > 1 and n odd, where there is 
no periodic cycle of odd period strictly between 1 and n. These are called Stefan cycles (Stefan, 
1977), and they have a particularly rigid structure that one can exploit.14 We then extend the 
result to all odd-period cycles.

Lemma 1. If f ∈ F has a periodic cycle of odd period n ≥ 3, but no periodic cycle of odd period 
strictly between 1 and n, then f j (m) ≤ m for some odd j with 3 ≤ j ≤ n + 2.

Theorem 1. Let f ∈ F . The map f admits an odd-period cycle if and only if f k(m) ≤ m for 
some odd k > 1.

13 Example 1 presents a situation in which there are a continuum of two-period cycles.
14 Note that three-period cycles are always Stefan cycles, but not all five-period cycles are Stefan cycles; see Robinson 
(1995).
6
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The elegance of Theorem 1 notwithstanding, it is an existential claim and hence not easily ver-
ifiable. The question then remains whether there is an easily verifiable necessary and sufficient 
condition for the existence of odd-period cycles. Towards that, we offer Theorem 2 which identi-
fies Condition OPC as the condition one is after. Moreover, in the economic applications in what 
follows, � is a singleton and so the result can be further sharpened to a requirement hinging only 
on the critical and the fixed points.

Theorem 2. Let f ∈ F . The map f admits an odd-period cycle if and only if Condition OPC is 
satisfied.

Corollary 1. Let f ∈F with � being a singleton. The map f admits an odd-period cycle if and 
only if Condition OPCz is satisfied.

2.3. Characterization of turbulence of the second iterate

We now provide the necessary and sufficient condition for the second iterate of a map being 
turbulent. Again, if � is a singleton, the condition we identify can be further sharpened as in 
Corollary 2.

Theorem 3. Let f ∈F . The second iterate f 2 is turbulent if and only if Condition TUR is satis-
fied.

Corollary 2. Let f ∈ F with � being a singleton. The second iterate f 2 is turbulent if and only 
if Condition TURz is satisfied.

Theorem 3 and its corollary strengthen the main result in Mitra (2001) and its recent generaliza-
tion. In Mitra (2001), the main characterization result, Proposition 2.3, states that for f ∈ F , if 
f 2(m) < m and f 3(m) < z, then f 2 is turbulent. Deng and Khan (2018) generalize this suffi-
cient condition for f 2 being turbulent by replacing f 3(m) < z with f 3(m) ≤ z. In contrast, this 
paper provides a necessary and sufficient condition for the second iterate being turbulent. For the 
special case of � being a singleton, Corollary 2 demonstrates the sufficient condition identified 
in Deng and Khan (2018) to be also necessary.

Moreover, according to Corollaries 1 and 2, if � is a singleton, Condition OPC can be simpli-
fied as f 2(m) < m and f 3(m) < z and Condition TUR boils down to f 2(m) < m and f 3(m) ≤ z. 
In this case, the difference between the existence of the odd-period cycles and turbulence of the 
second iterate exactly lies in the borderline case for f 3(m) = z, which is the focus of the “easy 
extension” as in Deng and Khan (2018), thereby highlighting that the borderline case is, albeit 
not being robust to small parametric perturbation, conceptually important.

However, if � is not a singleton and therefore μ < μ̄, then the distinction between odd-period 
cycles and the turbulence of the second iterate becomes more “visible”. To illustrate our main 
results for a non-singleton �, we consider the following piece-wise linear map f from [0, 1] to 
itself:
7
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Fig. 1. The Map for Example 1.

Example 1.

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

4x for 0 ≤ x ≤ 3/14
6/7 + (1/2)(x − 3/14) for 3/14 < x ≤ 1/2
1 − (x − 1/2) for 1/2 < x ≤ 6/7
9/14 − 3(x − 6/7) for 6/7 < x ≤ 1.

The map is plotted in Fig. 1. The modal point m = 1/2. The interior fixed point z = 3/4. There 
is a two-period cycle in the downward sloping part of the map, with the periodic points 6/7 and 
9/14. In fact, there are a continuum of two-period cycles with � = [9/14, 6/7]. The first four 
iterates of f starting from m can be calculated as follows

f (m) = 1; f 2(m) = 3/14; f 3(m) = 6/7; f 4(m) = 9/14.

Clearly, f 2(m) < m but f 3(m) > z, so the original theorem in Mitra (2001) does not apply. 
However, since f 3(m) = 6/7 ∈ �, Theorem 3 suggests f 2 is turbulent. This is indeed the case, 
which can be seen from f 2(3/14) = 9/14 = f 2(9/14), f 2(1/2) = 3/14, and 3/14 < 1/2 <
9/14. Further, since f 3(m) = 6/7 ≥ μ = 9/14, f does not admit an odd-period cycle.

A natural question arises: given the usefulness of turbulence, why do we focus only on the 
second iterate? According to the refined Sharkovsky order in Block and Coppel (1986), turbu-
lence of the map itself precedes the three-period cycle. In some of the economic applications, 
we already know that the map does not have a three-period cycle (Matsuyama, 1999; Khan and 
Mitra, 2005b) and thus it precludes the map itself from being turbulent. Moreover, assuming that 
we do not have any prior information about the existence of a three-period cycle of the map, the 
following result suggests that turbulence of the map itself leads to a very restrictive condition 
which is unlikely to be satisfied in most economic applications.

Proposition 1. If f ∈F is turbulent, then f (b) = f (a) = a and f (m) = b.
8
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In terms of the refined Sharkovsky order, if we want an easily verifiable condition for topological 
chaos by exploiting the concept of turbulence, we can then check for turbulence of fn with n
being a power of 2. Clearly, the easiest to check would be turbulence of f 2.

Before turning to the applications, let us also note that in some economic models, the dynam-
ics are represented by a unimodal map with a local minimum instead of a local maximum. With 
some adaptation of the conditions, our results hold for a unimodal map with a local maximum or 
with a local minimum. Let G be the set of continuous maps from an interval, [a, b], to itself such 
that its generic element g satisfying the following two conditions:

(i) There is m in (a,b), with the map g strictly decreasing on [a, m] and strictly increasing on 
[m, b].

(ii) g(a) > a, g(b) ≤ b, and g(x) < x for all x in [m, b).

There is also a unique interior fixed point z ∈ (a, m). For g ∈ G, let �′ ≡ {x ∈ [a, m] : g(x) ∈
[a, m] and g2(x) = x}. Like �, by construction, we have z ∈ �′. Our main theorems, Theorems 2
and 3, can be easily extended to this “overturned” class of unimodal maps G.

Corollary 3. Let g ∈ G. The map g has an odd-period cycle if and only if g2(m) > m and 
g3(m) > max{x ∈ �′} and the second iterate g2 is turbulent if and only if g2(m) > m and 
g3(m) ≥ min{x ∈ �′}.

3. Models of intertemporal resource allocation

In this section, we consider a wide array of dynamic economic models which all give rise 
to unimodal maps as the representation of the dynamics. The first four models yield maps in 
F with a local maximum in a dynamic environment with strategic considerations (Battaglini, 
2021), in an overlapping-generation setting (Iong and Irmen, 2021), or under an equilibrium 
growth framework (Matsuyama, 1999; Baumol and Wolff, 1992). The last two models yield 
maps in G with a local minimum in both equilibrium and optimum growth settings (Deneckere 
and Judd, 1992; Khan and Mitra, 2005a). However, it is worth underscoring that our perusal of 
these papers is primarily motivated by the synthetic thrust of this work: to show the relevance of 
our two theoretical results pertaining to the existence of odd-period cycles and to the phenomena 
of turbulence. It is not intended to substitute for the substantive contributions of the other papers 
themselves, and the reader is strongly encouraged to go directly to them, though perhaps keeping 
our summary statements in mind.

3.1. The Battaglini model: time inconsistency in environmental protection

To investigate the inherent unpredictability in dynamic social problems, Battaglini (2021)
considers a political economy model of environmental protection. Time inconsistency in policy 
making arises from the fact that two parties stochastically alternate in power, with each incum-
bent party under the strong temptation to cater to its own political constituency. Due to time 
inconsistency, policy making in the model hinges on the expectation of the policy chosen by the 
future incumbent: the incumbent has lower incentives to pollute if the future incumbent is ex-
pected to be a heavy polluter while the incentives to pollute are higher if the future incumbent is 
expected to adopt a more environmentally-friendly policy. Battaglini (2021) demonstrates time 
inconsistency to be a novel source of complicated dynamics in the equilibrium evolution of the 
9



L. Deng, M.A. Khan and T. Mitra Journal of Economic Theory 201 (2022) 105446
pollution level and this insight can be applied to a much broader range of models featuring time 
inconsistency in decision making.

According to Proposition 1 in Battaglini (2021), if the temptation of the incumbent to cater to 
its constituency is sufficiently strong, then the dynamics of the pollution level x in a symmetric 
Markov perfect equilibrium can be described as

fb(x) = φ1x − φ2x
2 + c, for x ∈ Xb ≡

[
φ1 − 1 − √

(φ1 − 1)2 + 4φ2c

2φ2
,

φ2
1

4φ2
+ c

]
,

where φ1 and φ2 > 0 are composite parameters of the model and c arises from the expectation 
of the future behavior of the other party, satisfying 4 ≤ 4φ2c + (φ1 − 1)2 ≤ 9. Moreover, for 
any x ∈ Xb , f (x) ∈ Xb and for any x /∈ Xb , the economy converges in finite periods to Xb. 
Since fb is a unimodal map satisfying all the conditions for F , we can identify the critical point 
m = φ1/(2φ2) and the interior fixed point z = (φ1 − 1 + √

(φ1 − 1)2 + 4φ2c)/(2φ2). As shown 
by Battaglini (2021), fb is topologically conjugate to the logistic map fη(x) = ηx(1 − x) for 
x ∈ [0, 1] with η = 1 + √

(φ1 − 1)2 + 4φ2c. Appealing to the results on the logistic map, he 
establishes the existence of cycles of any period and the occurrence of topological chaos. Our 
theoretical results enable a more direct way to characterize two specific forms of topological 
chaos: odd-period cycles and turbulence of the second iterate. By showing that � is a singleton 
when f 2

b (m) < m, we can apply Theorems 2 and 3 to obtain the following proposition.

Proposition 2. Let t̂ be the unique real root of the equation t3 + t2 − 5t − 13 = 0 (t ≈ 2.6786). 
Then fb has an odd-period cycle if and only if t̂2 < 4φ2c + (φ1 − 1)2 ≤ 9 and f 2

b is turbulent if 
and only if t̂2 ≤ 4φ2c + (φ1 − 1)2 ≤ 9.

Since η = 1 + √
(φ1 − 1)2 + 4φ2c, the two conditions we identify can further be rewritten as 

t̂ + 1 < η ≤ 4 and t̂ + 1 ≤ η ≤ 4, respectively. Interestingly, the lower bound (t̂ + 1) ≈ 3.6786 is 
also identified by Ruelle (1977) as the value for η in the logistic map under which there exists an 
invariant measure.15 Moreover, since both φ1 and φ2 increase with the incumbent’s temptation 
to abuse power in the model, the conditions in Proposition 2 suggest that for chaos to arise, the 
level of temptation can be neither too high nor too low.

3.2. The Iong-Irmen model: the role of declining working hours

In an overlapping generation setting with exogenous population growth, Iong and Irmen 
(2021) endogenize both individual supply of working hours and technological progress so as 
to study the decline of working hours and its role in the emergence of economic fluctuations. 
There are two growth regimes in equilibrium. If productivity, measured by the number of vari-
eties of the consumption goods, is high relative to population size, then the research sector is 
inactive and there is no productivity growth. If productivity is low relative to population size, 
then the research sector comes alive and new varieties will be created. The economy may bounce 
between the two growth regimes with the dynamics of the labor force to productivity ratio x
being described by

15 There is no coincidence because η = t̂ + 1 in Ruelle (1977) is chosen such that f 3
η (m) = z holds. Also see Brucks 

and Bruin (2004) or Robinson (1995).
10
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fii(x) ≡
⎧⎨
⎩

(1 + g)x 0 ≤ x ≤ xc

(1 + g)xn+1
c x−n xc ≤ x ≤ xc(1 + g),

where g > 0 is the exogenous growth rate of the labor force, xc > 0 is the critical value of x, 
and n > 1 is a composite parameter which decreases with intertemporal knowledge spillover 
and, more importantly, with the equilibrium elasticity of individual supply of working hours to 
change in productivity. The positive steady state becomes unstable when n is greater than one, 
and we focus on this case. The map fii belongs to F so we can apply Theorems 2 and 3 to obtain 
the following simple conditions for topological chaos.

Proposition 3. The map fii has an odd-period cycle if and only if n > (
√

5 + 1)/2 and f 2
ii is 

turbulent if and only if n ≥ (
√

5 + 1)/2.

This proposition says that, if this elasticity of individual supply of working hours to change in 
productivity is sufficiently negative, not only endogenous fluctuations, as shown by Iong and Ir-
men (2021), but also complicated dynamics in the form of odd-period cycles and turbulence will 
emerge.16 In other words, if individuals respond to productivity growth by aggressively cutting 
the working hours, then the long-term evolution of the economy can potentially be complex and 
unpredictable.17

3.3. The Matsuyama model: endogenous growth with cycles

Matsuyama (1999) develops an endogenous growth model in which innovation is explicitly in-
troduced with innovators enjoying temporary monopoly rents to study economic growth through 
cycles. There is no population growth and labor is supplied inelastically. Despite the sharp dif-
ferences in model setup and the underlying economic mechanism, there is a direct parallelism 
in the equilibrium dynamics between Matsuyama (1999) and Iong and Irmen (2021).18 Growth 
cycles in the Matsuyama model arise from dual forces of economic growth, investment-driven 
capital accumulation and innovation-driven variety expansion. If capital is scarce relative to the 
number of varieties, the economy grows purely through capital accumulation with no innova-
tion. If capital is relatively abundant, the research sector becomes active. In equilibrium, the 
economy fluctuates between a Solow-type neoclassical growth regime and a Romer-type en-
dogenous growth regime. The dynamics of capital stock per variety of intermediate goods x can 
be described by the M-map

fm(x) =
⎧⎨
⎩

Gxα 0 ≤ x ≤ 1

Gβx
β−1+x

1 < x < G,

16 One may perhaps also note the emergence of the golden ratio in the Imben-Iong model, a possibility for intertemporal 
allocation first pointed out by Mitra (1996) and Nishimura and Yano (1996) and further commented on in Khan and Piazza 
(2011).
17 We want to remind our reader again of the issue of observability of chaos especially for the interpretation of our 
results in an applied setting.
18 From a technical point of view, the equations are very different with the former model having a linear left arm, and 
the latter with both arms nonlinear.
11
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where both α and β depend on the elasticity of substitution between different intermediate inputs 
satisfying α ∈ (0, 1) and β = α

α
1−α ∈ (1/e, 1) with β decreasing with α, and a composite param-

eter G satisfies 1 < G < (1/β) − 1. Let fm(G) = f 2
m(1) = βG2/(β − 1 + G) ≡ τ , with β < 1/2

(or equivalently, α > 1/2). We have fm ∈ F with the modal point m = 1, the interior fixed point 
z = 1 + βG − β and � = {z}. If τ = f 2

m(m) = f 2
m(1) < 1 = m, f 3

m(m) = Gτα . Applying Theo-
rems 2 and 3, we obtain the following conditions for the M-map to admit odd-period cycles and 
for its second iterate to be turbulent, thus establishing the necessity of those sufficient conditions 
first identified in Mitra (2001) and Deng and Khan (2018).

Proposition 4. The map fm has an odd-period cycle if and only if τ < 1 and Gτα < 1 +βG −β; 
f 2

m is turbulent if and only if τ < 1 and Gτα ≤ 1 + βG − β .

3.4. The Baumol-Wolff model: information production and dissemination

To shed light on the sources of the productivity slowdown in the 1970s, Baumol and Wolff 
(1992) formalize a dynamic model to investigate the two-way relationship between production 
and dissemination of information and productivity growth in industry. On the one hand, infor-
mation output in the research sector raises productivity growth in industry outside the research 
sector. On the other hand, productivity growth translates into higher price of information which 
depresses the demand for information output. The feedback mechanism leads to the following 
law of motion of information output x produced by the research sector, which is of the form of a 
logistic map

fbw(x) = φ1x − φ2x
2

where x is in [0, φ1/φ2] and φ1, φ2 > 0 are composite parameters of the model, both increasing 
with the demand elasticity of information output and the sensitivity of the price of information 
to productivity growth outside the research sector. The modal point m is given by φ1/(2φ2). We 
further require φ1 ≤ 4 to ensure that fbw(m) ≤ φ1/φ2. The map fbw can be viewed as a special 
case of fb with c = 0 so we apply Proposition 2 to obtain the following corollary.

Corollary 4. Let t̂ be the unique real root of the equation t3 + t2 − 5t − 13 = 0 (t ≈ 2.6786). 
Then fbw has an odd-period cycle if and only if t̂ + 1 < φ1 ≤ 4 and f 2

bw is turbulent if and only 
if t̂ + 1 ≤ φ1 ≤ 4.

The corollary says that for chaos to arise in this feedback model, both the demand elasticity of 
information output and the price sensitivity of information to productivity growth have to be in 
some intermediate range. This result is a formal proof of the concluding remarks of the paper 
that “the intertemporal mechanism may well be oscillatory in character” and that “the feedback 
process may well be capable of generating chaotic behavior”.

3.5. The Deneckere-Judd model: innovation and temporary rents

As a pioneering paper on innovation cycles, Deneckere and Judd (1992) construct a growth 
model in which innovators enjoy temporary monopoly rents.19 Unlike Matsuyama (1999), the 

19 For the substantive importance of this model, see Aghion and Howitt (1988, 1992) and Rivera-Batiz and Romer 
(1991). The “check-map” and the notion of “trapping square” were also to appear first in this paper, concepts which were 
12
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model does not incorporate capital accumulation. Entrepreneurs choose to innovate only if the 
number of varieties of consumption goods is sufficiently small and the innovative activity is 
profitable. If the number of varieties is sufficiently high, the economy enters a regime with no 
innovation. With the assumption of exogenous obsolescence of the existing varieties, the number 
of varieties will gradually decline in the no-innovation regime. In the model, the number of 
varieties satisfies the following law of motion

fdj (x) =

⎧⎪⎨
⎪⎩

f − ξx 0 ≤ x ≤ f
ξ+(1−d)

(1 − d)x
f

ξ+(1−d)
< x ≤ f,

where f > 0 is a composite parameter, ξ > 1 depends on how strong the incentives to innovate 
decrease with the existing number of varieties, and 0 < d < 1 captures the degree of variety 
obsolescence. The map fdj can be viewed as a unimodal map in F that is turned 180 degree 
clockwise, and thus it belongs to the class of maps G as defined at the end of Section 2. Since 
fdj ∈ G, we have m = f/(ξ +1 −d) and z = f/(ξ +1). Since ξ > 1, there is no two-period cycle 
both periodic points of which are in [a, m] and thus �′ = {z}. We can then apply Corollary 3 to 
obtain the following conditions for topological chaos, which suggest that for chaos to arise, 
the incentives to innovate have to strongly decrease with the number of existing varieties and 
obsolescence of varieties is sufficiently slow.

Proposition 5. The map fdj has an odd-period cycle if and only if (ξ − 1/ξ)(1 − d) > 1 and f 2
dj

is turbulent if and only if (ξ − 1/ξ)(1 − d) ≥ 1.

3.6. The Robinson-Solow-Srinivasan model: optimal development policy

Khan and Mitra (2005a, 2012) study the optimal choice of technique in a model of devel-
opment planning originally formulated by Robinson, Solow, and Srinivasan. In the two-sector 
Robinson-Solow-Srinivasan model, production technology in both the consumption good and 
investment good sector is linear. The optimal dynamics of capital stock are investigated through 
the check-map, as described by

fc(x) =
⎧⎨
⎩

1 − ξx 0 ≤ x ≤ 1/ξ

(1 − d)x − (1 − d)/ξ 1/ξ ≤ x ≤ 1,

where ξ > 1 is a composite parameter and 0 < d < 1 is the depreciation rate of capital. It is 
worth highlighting the analytical parallel between the check-map and the map fdj arising from 
the Deneckere-Judd model. Since the check-map is also in G, we can apply Corollary 3 to obtain 
the same conditions for topological chaos as in Proposition 5.

Corollary 5. The map fc has an odd-period cycle if and only if (ξ − 1/ξ)(1 − d) > 1 and f 2
c is 

turbulent if and only if (ξ − 1/ξ)(1 − d) ≥ 1.

intensively relied upon in the geometrical conceptions of the work on the Robinson-Solow-Srinivasan model; see Khan 
and Mitra (2013) and their references.
13
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4. Concluding remarks

In this paper, we establish two equivalence results for a class of unimodal maps. The first 
equivalence result concerns the existence of odd-period cycles, while the second concerns the 
second iterate of the map to be turbulent. These two equivalence results lead to easily verifiable 
conditions for topological chaos. Compared with the sufficient condition originally identified in 
Mitra (2001), our characterization results provide necessary and sufficient conditions not only 
for the turbulence of the second iterate but also for the existence of odd-period cycles. To demon-
strate their easy verifiability, we apply our results to six models of economic dynamics and obtain 
parametric conditions for the two specific forms of topological chaos.

We conclude this paper with two observations, both concerning the new tools for the study of 
cyclical and chaotic dynamics:

(i) Given its prominent role in complicated dynamics, it is curious whether the existence of 
three-period cycles can be characterized by easily verifiable necessary and sufficient condi-
tions.

(ii) Recent work suggests the emergence of pan maps with a flat bottom and bimodal maps 
in the two-sector growth model with linear production technology (Khan and Mitra, 2012; 
Deng et al., 2021). It remains open whether our characterization results can be extended to 
incorporate those maps.

So this is the next step in this research program.

5. Proofs

Proof of Lemma 1. If f ∈ F has a periodic cycle of odd period n ≥ 3, but no periodic cycle of 
odd period strictly between 1 and n, then we can order the n periodic points in increasing order 
on [a, b] and define the midpoint c for which (n−1)

2 periodic points are smaller than c and (n−1)
2

periodic points are greater than c. We now establish two preliminary results.

Lemma 2. Suppose f ∈ F has a periodic cycle of odd period n > 1, but no periodic cycle of odd 
period strictly between 1 and n. If c is the midpoint of the cycle of odd period n, then the points 
of the cycle have the order:

f n−1(c) < f n−3(c) < · · · < f 2(c) < c < f (c) < · · · < f n−2(c) (1)

Proof. According to Proposition 8 (p.10) in Block and Coppel (1992), which is originally due 
to Stefan (1977), we know that the points of the cycle have the order given in (1), or the points 
of the cycle have the reverse order:

f n−1(c) > f n−3(c) > · · · > f 2(c) > c > f (c) > · · · > f n−2(c).

Using the fact that f ∈ F , we can now rule out the reverse order as follows. If the reverse 
order were to hold, then since c > f (c), we must have c ∈ (z, b]. And, since f n−1(c) >
f n−3(c) > · · · > f 2(c) > c holds, we must have f n−1(c), f n−3(c), ..., f 2(c) also in (z, b]. Since 
f n−1(c) ∈ (z, b], f n−1(c) and z both belong to [m, b], where f is decreasing. Then we must 
have f (f n−1(c)) < f (z) = z. But this means c = f n(c) = f (f n−1(c)) < z, which contradicts 
the fact that c ∈ (z, b]. Thus, the reverse order cannot hold, and (1) must hold, establishing the 
lemma. �
14
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It should be noted that a statement like (1) pertains to n odd with n − 1 > n − 2 > n − 3 > 2; 
that is, for n ≥ 7; otherwise, with for example n = 3, the statement f n−1(c) > f 2(c) is clearly 
invalid. For n = 3, the statement of (1) would read with all entries to the left of f 2(c) and all 
entries to the right of f (c) eliminated: f 2(c) < c < f (c). For n = 5, the statement of (1) would 
read with the term f n−3(c) eliminated: f 4(c) < f 2(c) < c < f (c) < f 3(c). Using Lemma 2, 
we can determine the position of the points of the cycle with respect to m and z.

Lemma 3. Suppose f ∈ F has a periodic cycle of odd period n > 1, but no periodic cycle of odd 
period strictly between 1 and n. If c is the midpoint of the cycle of odd period n, then the points 
of the cycle satisfy: (i) f n−1(c) < m; (ii) c < z; (iii) f n−2(c) ≥ · · · ≥ f (c) > z; (iv) c > m if 
n ≥ 5.

Proof. To establish (i), suppose on the contrary that f n−1(c) ≥ m. Then since c > f n−1(c), we 
have both c and f n−1(c) in [m, b], where f is decreasing. Thus, f (c) < f (f n−1(c)) = f n(c) =
c, which contradicts (1). To establish (ii), note that f (c) > c, so that c < z. To establish (iii), 
note that by (1), we have f n−2(c) ≥ · · · ≥ f (c). We use the weak inequalities to accommodate 
the case in which n = 3. Thus, it remains to establish that f (c) > z. Suppose, on the contrary, 
that f (c) ≤ z. Then, since f ∈ F , we must have f (f (c)) ≥ f (c), which means f 2(c) ≥ f (c), 
contradicting (1). To establish (iv), suppose on the contrary that c ≤ m. Since f 2(c) < c by 
(1), we have both f 2(c) and c in [a, m], where f is increasing. Thus, f (f 2(c)) < f (c), which 
contradicts (1) whenever n ≥ 5. �
With Lemmas 2 and 3 in hand, we now turn to the proof of Lemma 1. In view of the special 
status of n = 3, we first exclude this from our general analysis below. This allows us to display 
the nature of our proof for n odd and n ≥ 5. The necessary condition for n = 3 can be established 
independently. Let f ∈ F have a periodic cycle of odd period n ≥ 5, but no periodic cycle of odd 
period strictly between 1 and n and let c be the midpoint of the cycle of odd period n. Our proof 
consists of two main steps.

Step 1. We define x0 = m, and then proceed to define (n + 1) additional points {x1, ..., xn+1}. 
By (i) in Lemma 3, we have f (f n−2(c)) = f n−1(c) < m, while f (m) > m. By (iii) in Lemma 3, 
f n−2(c) > z. Since f n−2(c) > z > m, there exists x1 ∈ (m, f n−2(c)) such that f (x1) = m = x0. 
Since f (x1) = m < x1, we have x1 > z, and so there exists x1 ∈ (z, f n−2(c)) such that f (x1) =
x0 = m. Define I = {i odd, and i ∈ {1, ..., n − 4}}. We now claim that if for some i ∈ I , we have 
xi ∈ (z, f n−i−1(c)) such that f (xi) = xi−1, then

(i) ∃xi+1 ∈ (f n−i−2(c), z) such that f (xi+1) = xi

(ii) ∃xi+2 ∈ (z, f n−i−3(c)) such that f (xi+2) = xi+1

}
(2)

To establish (2)(i), note that we have (n − i − 2) is even, and so f n−i−2(c) < c < z by (1)
and (ii) in Lemma 3. Further, we have f (f n−i−2(c)) = f n−i−1(c) > xi , while f (z) = z < xi . 
Thus, there exists xi+1 ∈ (f n−i−2(c), z) such that f (xi+1) = xi , establishing (2)(i). To establish 
(2)(ii), note that we have (n − i − 3) is odd, and so f n−i−3(c) > z by (iii) in Lemma 3. Further, 
by (2)(i) we have f (f n−i−3(c)) = f n−i−2(c) < xi+1, while f (z) = z > xi+1. Thus, there exists 
xi+2 ∈ (z, f n−i−3(c)) such that f (xi+2) = xi+1, establishing (2)(ii).

Using the definition of x1 and (2)(i) and (2)(ii), we would then obtain S = {x2, x3, ..., xn−3,

xn−2}, satisfying xi+1 ∈ (f n−i−2(c), z) such that f (xi+1) = xi and xi+2 ∈ (z, f n−i−3(c)) such 
that f (xi+2) = xi+1 for i ∈ I . Together with x1 defined above, we have a set of (n − 2) points in 
the set {x1, ..., xn−2}. It remains to define three additional points {xn−1, xn, xn+1}.
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For i = n − 4, we get xn−2 ∈ (z, f (c)) such that f (xn−2) = xn−3. Thus, f (c) > xn−2, while 
f (z) = z < xn−2. Further, we have c < z by (ii) in Lemma 3, so there exists xn−1 ∈ (c, z)
such that f (xn−1) = xn−2. Then, we have f (f n−1(c)) = f n(c) = c < xn−1, while f (m) ≥
f (f n−3(c)) = f n−2(c) > z > xn−1, where the second inequality follows from (iii) in Lemma 3. 
Further, we have f n−1(c) < m by (i) in Lemma 3, so there exists xn ∈ (f n−1(c), m) such that 
f (xn) = xn−1. Then, we have f (f n−2(c)) = f n−1(c) < xn, while f (z) = z > m > xn. Further, 
f n−2(c) > z by (iii) in Lemma 3, so there exists xn+1 ∈ (z, f n−2(c)) such that f (xn+1) = xn.

Step 2. We now use the points {x0, x1, ..., xn+1} to establish Lemma 1. To this end, note that 
if f j (m) ≤ m for some odd j with 3 ≤ j ≤ n then we are already done. Thus, we assume that 
f j (m) > m for all odd j with 3 ≤ j ≤ n. It remains to prove that f n+2(m) ≤ m.

Since xn+1 ∈ (z, f n−2(c)), we have f (m) ≥ f (f n−3(c)) = f n−2(c) > xn+1 > z. Thus, f (m)

and xn+1 belong to [m, b], where f is decreasing, and so f 2(m) < f (xn+1) = xn. Further, we 
have xn < m. Thus, both f 2(m) and xn belong to [a, m], where f is increasing, and so f 3(m) <
f (xn) = xn−1. Define J = {j odd: j ∈ {3, ..., n}}. We now claim that if f j (m) < xn−j+2 for 
some j ∈ J , then:

(i) f j+1(m) > f (xn−j+2) = xn−j+1

(ii) f j+2(m) < f (xn−j+1) = xn−j

}
(3)

To establish (3)(i), note that xn−j+2 > f j (m) > m, where the second inequality follows from the 
assumption that f j (m) > m for all odd j with 3 ≤ j ≤ n. Thus, xn−j+2 and f j (m) belong to 
[m, b] where f is decreasing, so that f j+1(m) > f (xn−j+2) = xn−j+1, establishing (3)(i). For 
j ∈ J , we have (n − j + 2) is even and n − j + 2 ∈ {2, ..., n − 1}; thus, (n − j + 1) is odd and 
n − j + 1 ∈ {1, ..., n − 2}. That is, for j ∈ J , we have xn−j+1 ∈ {x1, x3, ..., xn−2}. Now, note that 
by construction, all elements of the set {x1, x3, ..., xn−2} exceed z > m. Thus, for j ∈ J , by using 
(3)(i), we have f j+1(m) > f (xn−j+2) = xn−j+1 > m, and so both f j+1(m) and xn−j+1 belong 
to [m, b], where f is decreasing. Thus, using (3)(i), we obtain f j+2(m) < f (xn−j+1) = xn−j , 
establishing (3)(ii).

The implication of (3) is that if f j (m) < xn−j+2 for some j ∈ J , with j ≤ n − 2, then 
f j+2(m) < f (xn−j+1) = xn−(j+2)+2, and since (j + 2) ∈ J , (3) can be applied again. Since 
we have shown that f j (m) < xn−j+2 for j = 3 ≤ n − 2, we can use this implication to ob-
tain f j (m) < xn−j+2 for all j odd in {3, ..., n}. Thus, in particular, we have f n(m) < x2. Since 
n ∈ J , one can apply (3) one more time to obtain f n+2(m) < f (x1) = x0 = m, which is the 
desired result.

We now turn to the proof of the necessary condition for n = 3. Let c be the midpoint of the 
cycle of period three. Then by Lemmas 2 and 3, we have f 2(c) < c < f (c) and (i) f 2(c) < m; 
(ii) c < z; (iii) f (c) > z. The proof strategy is very similar to the proof for the general case, 
which again consists of two main steps.

Step 1. We define x0 = m, and then define {x1, x2, x3, x4} as follows. We have f (c) > z > m

by (iii) and f (f (c)) = f 2(c) < m by (i), while f (m) > m (since f ∈ F). Thus, there exists 
x1 ∈ (m, f (c)) such that f (x1) = m = x0. Since f (x1) = m < x1, we must have x1 > z. So, 
there exists x1 ∈ (z, f (c)) such that f (x1) = m = x0. Then, we have f (c) > x1, while f (z) =
z < x1. Further, by (ii), we have c < z, so there exists x2 ∈ (c, z) such that f (x2) = x1. Next, 
note that f (f 2(c)) = f 3(c) = c < x2, while f (m) ≥ f (c) > z by (iii) and z > x2. Further, we 
have f 2(c) < m by (i), so there exists x3 ∈ (f 2(c), m) such that f (x3) = x2. Finally, note that 
f (f (c)) = f 2(c) < x3, while f (z) = z > m > x3. Further, we have f (c) > z by (iii), so there 
exists x4 ∈ (z, f (c)) such that f (x4) = x3.
16



L. Deng, M.A. Khan and T. Mitra Journal of Economic Theory 201 (2022) 105446
Step 2. We now use the points {x1, ..., x4} to establish Lemma 1. To this end, note that if f 3(m) ≤
m, then we are already done. Thus, it remains to show that if f 3(m) > m, then f 5(m) ≤ m. 
We start by noting that f (m) ≥ f (c) > x4 > z. Thus, f (m) and x4 are in [m, b], where f is 
decreasing, so f 2(m) < f (x4) = x3. Next, note that x3 < m, so f 2(m) and x3 are in [a, m], 
where f is increasing, so f 3(m) < f (x3) = x2. Recall that we are given f 3(m) > m, so we have 
f 3(m) and x2 in [m, b], where f is decreasing, so f 4(m) > f (x2) = x1. Since by construction 
x1 > z > m, so we have f 4(m) and x1 in [m, b], where f is decreasing, so f 5(m) < f (x1) =
x0 = m, which is the desired result. �
Proof of Theorem 1. We first prove the “if” part. If the condition holds for some odd k > 1, 
then we have f k(m) ≤ m < f (m) where the second inequality follows from f ∈ F . Then, by 
Theorem A of Block and Coppel (1986), which itself is obtained from Li et al. (1982), f has a 
k-period cycle.

We now turn to the “only if” part. If f admits an odd-period cycle, then there is some n ∈N , 
with n odd and n > 1, such that f has an n-period cycle. Then, we claim that f j (m) ≤ m for 
some odd j with 3 ≤ j ≤ n + 2. To see this, since f ∈ F has a periodic cycle of odd period 
n > 1, the set O(f ) = {i ∈ N : i is odd and i > 1, and f has an i-period cycle } is non-empty. 
Since O(f ) is a subset of the set of natural numbers, it has a minimum. Denote this minimum 
by n′, and note that n ≥ n′ ≥ 3. If n′ = 3, then by applying Lemma 1, f j (m) ≤ m for some 
j ∈ {3, 5}, so that f j (m) ≤ m for some odd j with 3 ≤ j ≤ n′ + 2 ≤ n + 2, thus establishing the 
claim. If n′ �= 3, then n′ ≥ 5, and, since n′ is the minimum of O(f ), there is no periodic cycle 
of odd period strictly between 1 and n′. Then by Lemma 1, we have f j (m) ≤ m for some odd j
with 3 ≤ j ≤ n′ + 2 ≤ n + 2, again establishing the claim. Since f j (m) ≤ m for some odd j > 1, 
we have obtained the desired result. �
Proof of Theorem 2. We first establish the following preliminary result.

Lemma 4. Let f ∈F . If f k(m) ≤ m for some odd k > 1, then f 2(m) < m and f 3(m) < z.

Proof. We first prove f 2(m) < m. Suppose on the contrary f 2(m) ≥ m. Since f (m) > z > m, 
f 2(m) = f (f (m)) < f (z) = z. Then we must have z > f 2(m) ≥ m. We now claim that if z >

f n(m) ≥ m for some even number n, then (i) z < f n+1(m) ≤ f (m) and (ii) z > f n+2(m) ≥ m. 
Since z, f n(m), and m are in [m, b] where f is decreasing, z < f n+1(m) ≤ f (m), thus estab-
lishing (i). Since again z, f n+1(m) and f (m) are in [m, b], and f 2(m) ≥ m, z > f n+2(m) ≥
f 2(m) ≥ m, thus establishing (ii). Since z > f 2(m) ≥ m, using (i) and (ii), we obtain by in-
duction f k(m) > z > m for any odd k, which leads to a contradiction. Thus, we must have 
f 2(m) < m.

We now turn to the second condition, f 3(m) < z. Pick the smallest odd k such that f k(m) ≤
m. If k = 3, it immediately follows from f 3(m) ≤ m < z. We now claim that, for odd k with 
k > 3, if f (m) > m, f 3(m) > m,..., f k−2(m) > m, and f k(m) ≤ m, then f 3(m) < z. Suppose 
on the contrary that f 3(m) ≥ z. Since f 3(m) ≥ z, we must have f 4(m) = f (f 3(m)) ≤ f (z) = z. 
We claim that if f �(m) ≤ z for � ∈ {i even, and 4 ≤ i ≤ k − 1}, then (iii) f �+1(m) ≥ z and 
(iv) f �+2(m) ≤ z. Since we have shown f 2(m) < m, for any x in [f 2(m), f (m)], f 2(m) ≤
f (x) ≤ f (m). Since f 2(m) ∈ [f 2(m), f (m)], by induction we have f n(m) ∈ [f 2(m), f (m)]
for any natural number n such that n ≥ 2. In particular, f �(m) ≥ f 2(m). Since f �(m) ≤ z, 
consider two possible cases: (a) f �(m) ≤ m, or (b) m < f �(m) ≤ z. For (a), since m ≥ f �(m) ≥
f 2(m), f �+1(m) = f (f �(m)) ≥ f (f 2(m)) = f 3(m) ≥ z, and then f �+2(m) ≤ z. For (b), since 
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f is decreasing on [m, b] and m < f �(m) ≤ z, f (f �(m)) = f �+1(m) ≥ z. Then we must have 
f �+2(m) ≤ z. Thus we establish (iii) and (iv). Since f 4(m) ≤ z, using (iii) and (iv), we obtain by 
induction f k(m) ≥ z > m, contradicting to f k(m) ≤ m. Thus, we must have f 3(m) < z, which 
is the desired result. �

With this lemma in hand, we are now ready to prove the theorem. According to Theorem 1, it 
suffices to show that Condition OPC is satisfied if and only if f k(m) ≤ m for some odd k > 1.

We first prove the “if” part. According to Lemma 4, we have f 2(m) < m and f 3(m) <
z. If � is a singleton, then we reach the desired conclusion. Suppose � is not a single-
ton. We must have μ = min{x ∈ �} < z. To see this, pick x ∈ � with x �= z. If x < z, 
then μ = min{x ∈ �} ≤ x < z. If x > z, f (x) < z. Since x ∈ �, f (x) ≥ m and we know 
f 2(f (x)) = f (f 2(x)) = f (x), so f (x) ∈ �, which again implies μ ≤ f (x) < z. By construc-
tion, μ ≥ m, and since f 2(m) < m, μ �= m. Thus, μ > m. Suppose on the contrary f 3(m) ≥ μ. 
Since z > f 3(m), we have z > f 3(m) ≥ μ. We claim if z > f k(m) ≥ μ for odd k > 1, 
then z > f k+2(m) ≥ μ. Since μ > m and z > f k(m) ≥ μ, we have z > f k(m) ≥ μ > m, 
which implies z = f (z) < f (f k(m)) = f k+1(m) ≤ f (μ). Since f (μ) ≥ f k+1(m) > z > m, 
we have z = f (z) > f (f k+1(m)) = f k+2(m) ≥ f (f (μ)) = μ, establishing the claim. Since 
z > f 3(m) ≥ μ, by induction, we have f k(m) ≥ μ for any odd k > 1. Since μ > m, then 
f k(m) > m for any odd k > 1, which contradicts to the condition that f k(m) ≤ m for some 
odd k > 1. Therefore, we must have f 3(m) < μ.

We now turn to the “only if” part. Condition OPC is satisfied and suppose on the con-
trary f k(m) > m for any odd k > 1. To proceed, we define a mapping fr : [m, f (m)] →
[f 2(m), f (m)] by setting fr(x) = f (x) for any x ∈ [m, f (m)]. Since fr is strictly decreasing, 
it is one to one and so f −1

r is well-defined. We define another mapping g : [f 2(m), z] → [m, z]
by setting g(x) = f −1

r ◦ f −1
r (x) for any x ∈ [f 2(m), z]. By construction, g is strictly increasing 

in [f 2(m), z] with g(f 2(m)) = m and μ is by definition the smallest fixed point of g. Since 
f 2(m) < m, μ �= m and so μ > m.

We claim for n ∈N and x ∈ [m, μ), if f 2n+3(m) > x and f 2n+1(m) > m, then

f 2n+1(m) > g(x). (4)

Suppose on the contrary f 2n+1(m) ≤ g(x). Since f 2n+1(m) > m, f 2n+2(m) = f (f 2n+1(m)) ≥
f (g(x)). Since g(μ) = μ and g is strictly increasing, we must have g(x) < g(μ) = μ for any 
x in [m, μ). Also we know g(x) ≥ m, so f (g(x)) > f (μ) ≥ m. Hence, f 2n+2(m) ≥ f (g(x)) >
m, which implies f 2n+3(m) = f (f 2n+2(m)) ≤ f (f (g(x))) = f 2

r (g(x)) = x, contradicting to 
f 2n+3(m) > x. Therefore, (4) must hold.

Since g(x) ∈ [m, z] for any x ∈ [f 2(m), z] and f 2(m) < m < z, z ≥ g(m) ≥ m, and by 
f 2(m) < m, g(m) �= m, so z ≥ g(m) > m. Since g is strictly increasing, z = g(z) ≥ g(g(m)) =
g2(m) > g(m). By induction, z = g(z) ≥ g(gn(m)) = gn+1(m) > g(gn−1(m)) = gn(m) > m for 
any natural number n. So the sequence {gn(m)}∞n=0 is well defined and it is strictly increasing. 
Since the sequence has an upper bound z, there must exist a limit. Suppose limn→∞ gn(m) < μ. 
Since g is continuous, g(limn→∞ gn(m)) = limn→∞ gn+1(m) = limn→∞ gn(m), which contra-
dicts to μ being the smallest fixed point of g. Therefore, limn→∞ gn(m) ≥ μ. Further, we know 
f 3(m) < μ and by supposition f 3(m) > m. Since the sequence {gn(m)}∞n=0 is strictly increas-
ing, limn→∞ gn(m) ≥ μ, and μ > m, there exists a natural number n0 such that gn(m) > f 3(m)
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for any n ≥ n0 and gn(m) ≤ f 3(m) for any non-negative integer n such that n < n0. Since 
f k(m) > m for any odd k > 1, in particular, f 2n0+3(m) > m and f 2n0+1(m) > m. Then, by 
(4), f 2n0+1(m) > g(m). Since gn(m) ≤ f 3(m) < μ for n = 0, 1, 2, ..., n0 − 1, applying the 
same argument using (4), we obtain f 2n0−2n+3(m) > gn(m) for n = 1, 2, ..., n0. In particular, 
f 3(m) > gn0(m), which leads to a contradiction. So there must exist some odd k > 1 such that 
f k(m) ≤ m.

Hence, we have shown that Condition OPC is satisfied if and only if f k(m) ≤ m for some odd 
k > 1. The necessity and sufficiency of Condition OPC for the odd-period cycles then directly 
follows from Theorem 1. �
Proof of Theorem 3. We first prove the “if” part. As a preliminary step, let us note that since 
f 2(m) < m, the modal point m does not belong to �. That is, � is actually a subset of (m, b]. 
Let π ≡ μ̄ = max{x ∈ �}, and define π ′ = f (π). Then, by the definition of �, we have π ′ ∈
D = [m, b]. Further, f (π ′) = f (f (π)) = π , and since π ∈ � ⊂ D, we have f (π ′) ∈ D. Finally, 
f 2(π ′) = f (π) = π ′. Thus π ′ also belongs to the set �. In particular, let us note for what follows 
that

f (π ′) = π ∈ (m,b] and π ′ = f (π) ∈ (m,b] (5)

We divide the proof now into two cases: (i) f 2(m) < m and f 3(m) = π ; (ii) f 2(m) < m and 
f 3(m) < π .

Case (i): In this case, we construct a trajectory from m, such that f 2 reaches π ′ = f (π) in two 
periods (f reaches π ′ in four periods) after moving away from π ′ in the first period. Define 
p = f 2(m). Then, by (5), π ′ > m, and since f 2(m) < m, we have p < m. We note this as p <

m < π ′. Since f 3(m) = π , we have f (p) = f (f 2(m)) = f 3(m) = π , and so by (5): f 2(p) =
f (f (p)) = f (π) = π ′. We obtain f 2(p) = π ′ = f 2(π ′), where the second equality follows 
from the definition of π ′, and p = f 2(m). Since we know p < m < π ′, we conclude that f 2 is 
turbulent.

Case (ii): In this case, we construct a trajectory from a point exceeding m (point identified as s′
below) such that f 2 reaches π in two periods (f reaches π in four periods) after moving away 
from π in the first period. This construction is naturally more involved than in case (i) above. It 
makes repeated use of the intermediate value theorem, and the trajectory is defined by “backward 
recursion” from π .

By (5), π ′ > m, and since π ′, m ∈ D, we have f (m) > f (π ′) = π . Since f 3(m) < π , we have 
f (f 2(m)) < π . Using the continuity of f and noting that f 2(m) < m, there is p′ ∈ (f 2(m), m)

such that f (p′) = π . By (5) and since p′ < m, we have f (π) = π ′ > m > p′. Further, 
f (f (m)) = f 2(m) < p′. Using the continuity of f and noting that f (m) > π , there is:

q ′ ∈ (π,f (m)) such that f (q ′) = p′ (6)

We have, by (5), f (π) = π ′ > m. Also, since f 2(m) < m, we have f (f (m)) = f 2(m) < m. 
Using the continuity of f and noting that f (m) > π , there is:

r ′ ∈ (π,f (m)) such that f (r ′) = m (7)

Note that both q ′ and r ′ belong to (π, f (m)) ⊂ D. Since we have p′ < m (by the construction of 
p′), we obtain f (q ′) = p′ < m = f (r ′). Since f is decreasing on D, and q ′ and r ′ belong to D, 
implies that q ′ > r ′. We have from (6) and (7), f 2(r ′) = f (m) > q ′. Also, since π ∈ �, we can 
19



L. Deng, M.A. Khan and T. Mitra Journal of Economic Theory 201 (2022) 105446
Fig. 2. The Second Iterate of f .

use (6) to write f 2(π) = π < q ′. Using the continuity of f 2 and noting that π < r ′ (from (7)), 
there is:

s′ ∈ (π, r ′) such that f 2(s′) = q ′ (8)

We now summarize the information from the previous steps. Note that q ′ > r ′ and (8) that 
π < s′ < r ′ < q ′. Further, using p′ < m, (6), (8), and the fact that π ∈ �, we obtain f 2(q ′) =
f (p′) = π = f 2(π) and f 2(s′) = q ′. Thus, we conclude that f 2 is turbulent.

We now turn to the “only if” part. It is helpful to get a visual of the second iterate of f ∈
F . It is useful for this purpose to assume that f (a) < m and f (b) < m. This assumption is a 
simplification, allowing us to draw a diagram rigorously with the maintained assumptions. As 
will be clear later, it can be dispensed with for the theory to follow. Since f (a) < m and f (m) >
m, there is m1 ∈ (a, m) such that f (m1) = m. Since f (m) > m and f (b) < m, there is m2 ∈
(m, b) such that f (m2) = m. With this information in hand, we have a < m1 < m < m2 < b and 
the second iterate of f (that is, f 2) has three “turning points” m1, m, and m2 and four sections 
S1 = [a, m1], S2 = [m1, m], S3 = [m, m2] and S4 = [m2, b], such that f 2 is monotone increasing 
on S1, monotone decreasing on S2, monotone increasing on S3 and monotone decreasing on S4.

This information allows us to draw a diagram of f 2 as Fig. 2. It is meant to be a visual aid 
to our analysis. There is one observation about the diagram that is worth noting. Anticipating 
the theory to come, pertaining to the implications of turbulence of f 2, we have assumed in the 
diagram that f 2(m) < m. Other than this feature, the diagram is meant to be generic for maps 
f ∈F satisfying f (a) < m and f (b) < m.

If f 2 is turbulent, then there exist points x1, x2, x3 in [a, b], satisfying:

f 2(x2) = f 2(x1) = x1 and f 2(x3) = x2 (9)

and, in addition, either:

(i) x1 < x3 < x2

(ii) f 2(x) > x1 for x1 < x < x2

(iii) x < f 2(x) < x for x < x < x

⎫⎬
⎭ (10)
2 1 3
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Fig. 3. Implication of Turbulence for f 2.

or the same with all inequalities in (10) reversed. This follows from Lemma 1 in Block and 
Coppel (1986). Note well the additional conditions (10)(ii) and (10)(iii), not mentioned in the 
sufficient conditions for turbulence of f 2 in Block and Coppel (1986). The information above 
allows us to draw Fig. 3, which reflects the nature of the map f 2, on the interval [x1, x2], when 
f 2 is turbulent. In drawing this diagram, we have made use of the information in (9) and (10), 
but also the information that the map of f 2 is piecewise monotone.

We will in fact suppose that (10) is satisfied, since the other case is entirely analogous. We 
proceed with our analysis by separating two cases (i) x1 ≥ m, (ii) x1 < m. Visually, the first 
case can be identified using Figs. 2 and 3 as one that arises when sections S3 and S4 contain the 
interval [x1, x2]. We investigate case (i) first.

Case (i): Since f is decreasing on [m, b], f decreases from f (m) to f (b) as x increases from 
m to b. We now claim that f (b) < m. Suppose, on the contrary, that f (b) ≥ m. Then f (m) ≥
f (b) ≥ m, so that both f (m) and f (b) belong to [m, b], and since f is decreasing on [m, b], 
we must have f 2(x) increasing from f 2(m) to f 2(b) as x increases from m to b. Since (10)(i) 
gives us x2 > x3 > x1 ≥ m, we must therefore have f 2(x2) > f 2(x3). But this implies by (9) that 
x1 > x2, a contradiction. This establishes the claim.

Since f (m) > m and f (b) < m, there is m2 ∈ (m, b) such that f (m2) = m. With this infor-
mation in hand, we have sections S3 = [m, m2] and S4 = [m2, b], such that f (x) decreases from 
f (m) to f (b) as x increases from m to b. Since f (m2) = m, and f is decreasing on [m, b] and 
increasing on [a, m], we must have f 2 monotone increasing on S3 and monotone decreasing on 
S4. Note that by (9) and (10)(ii), x1 is a fixed point of f 2 in an upward sloping section of f 2. 
Since x1 ≥ m, we must therefore have x1 in S3 = [m, m2]. We now proceed to establish prop-
erties of x3, x2, and x1 (in that order), which will in turn lead to our desired conclusion that 
Condition TUR holds. Specifically, we proceed to establish:

(i) x3 ∈ S3; (ii) x2 > m2; (iii) f 2(m) < m; (iv) x1 ∈ �. (11)

To establish (11)(i), suppose on the contrary that x3 /∈ S3. Then, since x3 > x1 ≥ m, we must 
have x3 ∈ (m2, b], and so m2 ∈ [x1, x3). That is either m2 = x1 or m2 ∈ (x1, x3). In the first case, 
f 2(m2) = f 2(x1) = x1 < x2 = f (f (x3)) ≤ f (m), a contradiction to the definition of m2. In 
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the second case, f 2(m2) = f (m) ≥ f (f (x3)) = x2, which contradicts (10)(iii). This establishes 
(11)(i), and we have m ≤ x1 < x3 ≤ m2. Note that it is possible that x3 = m2, or that x3 < m2. 
We have drawn the latter case in Fig. 3, since the former might be viewed as coincidental.

To establish (11)(ii), suppose again on the contrary that x2 ≤ m2. Then, since x2 > x1 ≥ m, 
we must have x2 ∈ S3. Since x3 also belongs to S3 by (11)(i), with x2 > x3, and f 2 is increasing 
on S3, we have x1 = f 2(x2) > f 2(x3) = x2, a contradiction to (10)(i). This establishes (11)(ii).

To establish (11)(iii), suppose on the contrary that f 2(m) ≥ m. Then, we have f (f (m)) ≥
m = f (m2). Since f (m) and m2 belong to [m, b], where f is decreasing, we must therefore 
have f (m) ≤ m2. Using (11)(ii), we then obtain f (m) ≤ m2 < x2 = f 2(x3) = f (f (x3)), which 
contradicts the fact that f is unimodal on [a, b], with modal point m. This establishes (11)(iii), 
which is the first part of Condition TUR.

To establish (11)(iv), recall that x1 is a fixed point of f 2 in S3. Since f 2(m) < m, x1 cannot be 
equal to m. Also, since x1 < x3 ≤ m2 ≤ b, we have x1 ∈ (m, m2) ⊂ (m, b). Define x4 = f (x1). 
Note that f (x4) = f 2(x1) = x1, and so f 2(x4) = f (x1) = x4. Thus, x4 is also a fixed point of 
f 2. To show that x1 ∈ �, it remains to verify that x4 ∈ [m, b]. To prove that x4 ∈ [m, b], note that 
f (x4) = x1 ∈ (m, m2), so that m < f (x4) < m2; then, since f is decreasing on [m, b], we must 
have x4 = f 2(x4) > f (m2) = m. This establishes (11)(iv).

We now use (11) to establish that f 3(m) ≤ x1. We have f (m) ≥ f (f (x3)) = x2 using the fact 
that f is unimodal on [a, b] with modal point m, and (9). Since x2 > m2 by (11)(ii) and f (m) ≥
x2, f (m) > m2. Since f 2 is decreasing on S4 and f (m) ≥ x2, we have f 3(m) = f 2(f (m)) ≤
f 2(x2) = x1. Since x1 ∈ � by (11)(iv), this implies f 3(m) ≤ μ̄, thus establishing the second part 
of Condition TUR.

Case (ii): We separate the analysis in this case, where x1 < m, to three subcases: (I) a < f (a) <
m; (II) f (a) ≥ m; (III) f (a) = a. We show that, in fact, subcases I and II can be ruled out, and 
the only subcase that is possible (when x1 < m) is subcase III.

Subcase I: Since f (a) < m and f (m) > m, there is m1 ∈ (a, m) such that f (m1) = m. With this 
information in hand, we have a < m1 < m and there are sections S1 = [a, m1], S2 = [m1, m], 
such that f (x) increases from f (a) to f (m1) as x increases from a to m1, and f (x) increases 
from f (m1) = m to f (m) > m as x increases from m1 to m. Since f is increasing on [a, m] and 
decreasing on [m, b], we must have f 2 monotone increasing on S1 and monotone decreasing on 
S2. Further, note that for x ∈ [a, m1], we have x < f (x) ∈ [f (a), m], so that f 2(x) > f (x) > x

for all x ∈ [a, m1]. That is, f 2 has no fixed point in [a, m1]. Since x1 is a fixed point of f 2 in an 
upward sloping portion of the map (by (9) and (10)(ii)), x1 < m is not possible. That is, in Case 
(ii), where x1 < m, Subcase I cannot arise.

Subcase II: Note that f (x) is increasing from f (a) to f (m) as x increases from a to m. Since 
f (a) ≥ m, and f is decreasing on [m, b], we must have f 2(x) decreasing from f 2(a) to f 2(m). 
Since x1 is a fixed point of f 2 in an upward sloping portion of the map (by (9) and (10)(ii)), 
x1 < m is not possible. That is, in Case (ii), where x1 < m, Subcase II cannot arise.

Subcase III: Since f (a) = a < m and f (m) > m, there is m1 ∈ (a, m) such that f (m1) = m. 
With this information in hand, we have a < m1 < m and there are sections S1 = [a, m1], S2 =
[m1, m], such that f (x) increases from f (a) to f (m1) as x increases from a to m1, and f (x)

increases from f (m1) = m to f (m) > m as x increases from m1 to m. Since f is increasing 
on [a, m] and decreasing on [m, b], we must have f 2 monotone increasing on S1 and monotone 
decreasing on S2. Further, note that for x ∈ (a, m1], we have x < f (x) ∈ (f (a), m], so that 
f 2(x) > f (x) > x for all x ∈ (a, m1]. That is, f 2 has no fixed point in (a, m1]. Since x1 is a 
22
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fixed point of f 2 in an upward sloping portion of the map (by (9) and (10)(ii)), and x1 < m, we 
must have x1 = a.

Note that we have f (f (x2)) = x1 = a. Since f (x) > a for all x ∈ (a, b), we must have either 
(a) f (x2) = a = x1, or (b) f (x2) = b. In Case (a), note again that since f (x) > a for all x ∈
(a, b), we must have x2 = a or x2 = b. And since x2 > x1 = a, we must in fact have x2 = b, and 
consequently f (b) = a. In Case (b), we have a = x1 = f 2(x2) = f (b), so again we must have 
f (b) = a. Thus, in both Case (a) and Case (b), we have f (b) = a. In both Case (a) and Case (b), 
we must also have f (m) = b. To see this, note that in Case (a), we have b ≥ f (m) ≥ f (f (x3)) =
f 2(x3) = x2 = b, while in Case (b), we have b ≥ f (m) ≥ f (x2) = b. Since f (m) = b and 
f (b) = a, f 2(m) = f (b) = a < m and f 3(m) = f (a) = a ≤ z ≤ μ̄ = max{x ∈ �}. Clearly, 
these two conditions verify Condition TUR.

Thus, f 2 is turbulent if and only if Condition TUR is satisfied. �
Proof of Proposition 1. By the definition of turbulence, there exists three points x1, x2, and 
x3, in [a, b] such that f (x2) = f (x1) = x1 and f (x3) = x2 with either (1) x1 < x3 < x2 or (2) 
x2 < x3 < x1. Note that x1 is a fixed point of f and we first claim that x1 is not the unique interior 
fixed point z. Suppose on the contrary x1 = z. If (1) holds, then x3 > x1 = z and therefore x2 =
f (x3) < z = x1, contradicting to x2 > x1. If (2) holds, then x3 < x1 = z. We know x2 = f (x3)

and x2 < x3, so x3 > m. Since x1 > x3 > m, x2 = f (x3) > f (x1) = x1, contradicting to x2 < x1. 
This establishes the claim that x1 �= z.

Since x1 is a fixed point and x1 �= z, we must have a = x1 being a fixed point. This also rules 
out (2). Since x2 > x1 = a and f (x) > x for all x ∈ (a, z), we must have x2 ∈ (z, b]. If x2 < b, 
then we would have f (b) < f (x2) = a, contradicting to the fact that f (x) ≥ a for any x ∈ [a, b]. 
Thus, we must have x2 = b and f (b) = f (x2) = x1 = a. Finally, we know b ≥ f (m) ≥ f (x3) =
x2 = b, so we must have x3 = m and f (m) = b. �
Proof of Corollary 3. Consider g ∈ G so g strictly decreases on [a, m] and strictly increases 
on [m, b]. Consider a map f̃ : [a, b] → [a, b], defined as f̃ (x) = a + b − x for x in [a, b]. Let 
f ≡ f̃ −1 ◦ g ◦ f̃ . As shown in the proof of Theorem 2 in Deng and Khan (2018), f and g are 
topologically conjugate and f ∈ F strictly increases on [a, a + b − m] and strictly decreases 
on [a + b − m, b]. Let � ≡ {x ∈ [a + b − m, b] : f (x) ∈ [a + b − m, b] and f 2(x) = x}. By 
construction, we have � = {y : (a + b − y) ∈ �′}. Since f 2(a + b − m) = a + b − g(a + b −
f (a + b − m)) = a + b − g2(m), g2(m) > m is equivalent to f 2(a + b − m) < a + b − m. 
Since f 3(a + b − m) = a + b − g(a + b − f 2(a + b − m)) = a + b − g3(m), g3(m) ≥ min{�′}
is equivalent to f 3(a + b − m) ≤ max{�}. Moreover, g3(m) > max{x ∈ �′} is equivalent to 
f 3(a +b−m) < min{x ∈ �}. Then the two equivalence results directly follow from Theorems 2
and 3. �
Proof of Proposition 2. Since m = φ1/(2φ2), we have

fb(m) = φ1 · φ1

2φ2
− φ2 ·

(
φ1

2φ2

)2

+ c = φ2
1

4φ2
+ c

f 2
b (m) = fb (fb(m)) = φ1 ·

(
φ2

1

4φ2
+ c

)
− φ2 ·

(
φ2

1

4φ2
+ c

)2

+ c

= −φ2c
2 +

(
φ1 − φ2

1

2
+ 1

)
c +

(
φ3

1

4φ2
− φ4

1

16φ2

)
.
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Then, f 2
b (m) < m can be written more explicitly as

−φ2c
2 +

(
φ1 − φ2

1

2
+ 1

)
c +

(
φ3

1

4φ2
− φ4

1

16φ2

)
<

φ1

2φ2

⇔ φ2c
2 −

(
φ1 − φ2

1

2
+ 1

)
c +

(
φ1

2φ2
− φ3

1

4φ2
+ φ4

1

16φ2

)
> 0

⇔ 1

16φ2

[
4φ2c + (φ1 − 1)2 − 1

][
4φ2c + (φ1 − 1)2 − 5

]
> 0

Since we know 4φ2c + (φ1 − 1)2 ≥ 4, f 2
b (m) < m is equivalent to 4φ2c + (φ1 − 1)2 > 5.

We now claim that � is a singleton if f 2
b (m) < m. To this end, for any x ∈ Xb ,

f 2
b (x) − x = φ1fb(x) − φ2(fb(x))2 + c − x

= φ1fb(x) − φ2(fb(x))2 + c − [fb(x) − (fb(x) − x)]
= φ1fb(x) − φ2(fb(x))2 + c − [φ1x − φ2x

2 + c − (fb(x) − x)]
= (φ1 + 1)(fb(x) − x) + φ2(−(fb(x))2 + x2)

= (fb(x) − x)[φ1 + 1 − φ2(fb(x) + x)].
Thus, for any π ∈ �, f 2

b (π) − π = 0 implies (i) fb(π) = π or (ii) h(π) ≡ φ1 + 1 − φ2(fb(π) +
π) = 0. From (i), we have π = z. Now consider (ii). We have

h(m) =φ1 + 1 − φ2

(
φ1 · φ1

2φ2
− φ2 ·

(
φ1

2φ2

)2

+ c + φ1

2φ2

)

=1

4

[
5 − (4φ2c + (φ1 − 1)2)

]
.

Since f 2
b (m) < m implies that 4φ2c + (φ1 − 1)2 > 5, h(m) < 0 if f 2

b (m) < m. Further, h′(m) =
−φ2(f

′
b(m) + 1) = −φ2 < 0 and h′′(x) = 2φ2

2 > 0 for any x ≥ m, the function h first decreases 
from m to some x > m and then increases. Thus, there exists at most one root of h(x) = 0
for x ≥ m. We know from the definition of �, if there exists π ∈ � such that π ≥ m, π �= z, 
and f 2

b (π) = π , then h(π) = 0 and there exists another π ′ ∈ � such that π ′ = fb(π), π ′ ≥ m, 
π ′ �= π , π ′ �= z, and f 2

b (π ′) = π ′, which again imply h(π ′) = 0. This contradicts to the fact that 
there is at most one root of h(x) = 0 for x ≥ m. Thus, � has to be a singleton if f 2

b (m) < m.
Since � is a singleton when f 2

b (m) < m is satisfied, to apply Theorems 2 and 3, we just need 
to specialize Conditions OPCz and TURz to the map fb. Consider first f 3

b (m) < z in OPCz. 
Since fb(f

2
b (m)) = f 3

b (m) < z = fb(z), φ1f
2
b (m) − φ2(f

2
b (m))2 + c < φ1z − φ2z

2 + c, which 
can be simplified as (f 2

b (m) − z)(φ1 − φ2(f
2
b (m) + z)) < 0. Since fb(m) > fb(z) = z, f 2

b (m) =
fb(fb(m)) < fb(z) = z and then f 3

b (m) < z is equivalent to φ1/φ2 > (f 2
b (m) + z). Using z =

(φ1 − 1 + √
(φ1 − 1)2 + 4φ2c)/(2φ2) and the expression of f 2

b (m), we can write this condition 
explicitly as

−φ2c
2 +

(
φ1 − φ2

1

2
+ 1

)
c +

(
φ3

1

4φ2
− φ4

1

16φ2

)
+ φ1 − 1 + √

(φ1 − 1)2 + 4φ2c

2φ2
<

φ1

φ2

⇔ φ2
2c2 − φ2

(
φ1 − φ2

1

2
+ 1

)
c +

(
1

2
+ φ1

2
− φ3

1

4
+ φ4

1

16

)
−

√
(φ1 − 1)2 + 4φ2c

2
> 0
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⇔
[
(φ1 − 1)2 + 4φ2c

]2 − 6[(φ1 − 1)2 + 4φ2c] − 8
√

(φ1 − 1)2 + 4φ2c + 13 > 0

Let t = √
(φ1 − 1)2 + 4φ2c. We further simplify the last inequality as t4 − 6t2 − 8t + 13 =

(t − 1)(t3 + t2 − 5t − 13) > 0 and using t ∈ [2, 3], we obtain t3 + t2 − 5t − 13 > 0. Since �(t) ≡
t3 + t2 − 5t − 13 strictly increases for t ∈ [2, 3] and �(2) < 0 and �(3) > 0, there exists a unique 
root t̂ ≈ 2.6786 such that �(t̂) = 0. Thus, f 3

b (m) < z is equivalent to (φ1 − 1)2 + 4φ2c > t̂2. 
Since t̂2 > 5, (φ1 − 1)2 + 4φ2c > t̂2 also ensures f 2

b (m) < m.
Thus, applying Theorem 2, we obtain the desired condition for the existence of odd-period 

cycles.. Similarly, we can apply Theorem 3 to obtain the necessary and sufficient condition for 
f 2

b to be turbulent. �
Proof of Proposition 3. We know m = xc, so f 2

ii (m) = (1 + g)1−nxc and thus, f 2
ii (m) < m if 

and only if n > 1. Solving for the interior fixed point, we obtain z = (1 +g)1/(n+1)xc. For any x >

m, f 2
ii (x) = (1 +g)1−nx1−n2

c xn2
. For any x > m, fii(x) = x implies that x = (1 +g)1/(n+1)xc =

z where the first equality follows from n > 1. Since we know n > 1, we must have f 2
ii (m) < m

and � being a singleton. Notice that if n = 1, � = [xc, xc(1 + g)]. Further, if f 2
ii (m) < m, then 

f 3
ii (m) < z can be explicitly written as fii(f

2
ii (m)) = (1 +g)2−nxc < z = (1 +g)1/(n+1)xc, which 

holds if and only if 2 − n < 1/(n + 1), or equivalently, n > (
√

5 + 1)/2 (since n > 1). Similarly, 
f 3

ii (m) ≤ z if and only if n ≥ (
√

5 + 1)/2. Applying Theorems 2 and 3, we obtain the desired 
conditions. �
Proof of Proposition 5. Since m = f/(ξ + 1 − d), we have

f 2
dj (m) = [dξ + (1 − d)]f

ξ + (1 − d)
>

f

ξ + (1 − d)
= m,

where the inequality follows from ξ > 1. Since z = f/(ξ + 1), f 3(m) > z can be explicitly 
written as

(1 − d)
[dξ + (1 − d)]f

ξ + (1 − d)
>

f

ξ + 1
⇔ dξ + (1 − d) >

ξ + (1 − d)

(ξ + 1)(1 − d)

⇔ 1 + (ξ − 1)d > 1 + ξd

(ξ + 1)(1 − d)
⇔ (ξ − 1)d >

ξd

(ξ + 1)(1 − d)

⇔
(

ξ − 1

ξ

)
(1 − d) > 1.

Since we know �′ = {z} and f 2
dj (m) > m always holds (since ξ > 1), fdj has an odd-period cycle 

if and only if f 3
dj (m) > z or equivalently, (ξ − 1/ξ) (1 − d) > 1. Similarly, we can establish the 

sufficient and necessary condition for the turbulence of f 2
dj to be (ξ − 1/ξ) (1 − d) ≥ 1. �
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