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My first objective is to describe in plain English how the model works, because I
think it is an interesting extension of macroeconomics. It seems paradoxical to me
that such an important characteristic of the equilibrium path should depend on
such a casual property of the technology.1 Solow (1962)

I am going to proceed on the assumption that the desirability of a path depends
only on the consumption that it gives at every instant of time. Therefore, to steer
the economy, the government need only control the allocation of output between
consumption and investment. (In a more detailed model, it would have to look
after the allocation of investment between the consumption goods industry and
the capital-goods industry.)2 Solow (1970)

Another outgrowth of the Ramsey work is the development of descriptive models of
economic growth where individuals take into consideration explicitly intertemporal
considerations. [T]he Ramsey model can be thought of as how a competitive
Robinson-Crusoe economy, or a competitive economy with identical individuals
living infinitely long, might behave.3 Stiglitz-Uzawa (1969)

1 Introduction and Antecedent Literature

Among his influential contributions to the theory of optimal economic growth, Kazuo
Nishimura has always reserved a pride of place for the two-sector model – a model
to which Japanese economists from Shinkai, Uzawa, Morishima, Inada, Amano and
Takayama downwards have contributed so much, thereby creating an immensely rich
tradition in economic theory. It is only fitting that he does so, and through a substantial
body of work, rightfully takes his own place in this distinguished line of authorship.4

1The two sentences are taken from the first two paragraphs of Solow’s 1962 11-paragraphed comment
on Uzawa’s two-sector model of economic growth, reprinted as Chapter 24 in Stiglitz-Uzawa [45]. It is
one of the two papers that constitute their Part IV titled Two-Sector Models and introduced with the
assertion that it, along with Part V titled Foundations of Optimal Economics, “represent perhaps the
two fastest growing areas of research in growth theory.”

2See Chapter 5 of Solow’s 1970 exposition, reprinted in [44], and commented on in [40, p. xii]. It
testifies to the somewhat conflicted relationship of Solow to the two-sector model: his enthusiastic 1962
reception, its bracketing in 1970, and its complete elimination in the survey [43] and the updated [44].

3See the introduction to Part V of the Stiglitz-Uzawa [45] anthology. We remind the reader that it
consists of only four papers: in addition to Ramsey’s 1928 and Samuelson’s 1958 classics, Malinvaud’s
1961 analogy between atemporal and intertemporal resource allocation and Solow’s 1962 comment on
the golden rule. All, still eminently worth reading, testify to the profession’s understanding of optimal
growth theory at that time. The omission of Uzawa’s 1964 paper on optimal growth is especially
interesting from the viewpoint of the results reported in this paper.

4To be sure, the literature does not have an exclusive Japanese accent: as is well-acknowledged, im-
portant contributions have been made by Joan Robinson, James Meade, Ronald Jones, Mordecai Kurz,
TN Srinivasan, John Chipman, Joseph Stiglitz and other non-Japanese economists. Once trade theory
and political economy is admitted into the picture, the literature simply mushrooms; see Magee [27],
Oswald [36] and Magee-Brock-Young [28], with the bibliographies of the first two references consisting
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In terms of Nishimura’s oeuvre, already in his 1979 paper on the application of the
Hopf bifurcation to optimal multi-sectoral growth theory, he and Jess Benhabib remind
the reader how their basic equations draw on the “duality between the Rybczyski and
Stolper-Samuelson effects well known in trade theory.”5 Six years later, in their 1985
analysis of competitive equilibrium cycles, the principal theorems on optimal oscillatory
cycles are set in the context of the two-sector model. In what is referred to as a setting
where “production is characterized by a two-sector neoclassical nonjoint technology,”
Nishimura and Benhabib write

Persistent cycles require a further restriction of the capital-intensity differences
between consumption and investment goods. For cycles to be sustained, the oscil-
lations in relative prices must not present intertemporal arbitrage opportunities.
Thus possible gains from postponing consumption from periods when the marginal
rate of transformation between consumption and investment is high to periods
when it is low must not be worth it. Whether this is the case or not depends on
the discount rate as well as the slope of the production possibility frontier.

Four years later, in their 1989 work on stochastic oscillatory cycles, Benhahib-Nishimura
carry forward their representation of the production-possibility curve in [4, Figure 1] to
two “suggestive” figures in a reserved section on diagrammatic exposition.6

However, it is in the late-eighties that the Li-Yorke theorem and topologically
chaotic trajectories of perfect-foresight paths enter the picture, and the two-sector model
is used in a different exemplary way. Writing in 1993, Nishimura-Yano note that

two types of models are known to have chaotic optimal paths. The ex-
amples of Deneckere-Pelikan (1986), Boldrin-Montruccchio (1986) and Boldrin-
Deneckere(1990) are based on two-sector models, while that of Majumdar-Mitra
(1994) are based on the shape of the utility function.7

In what can be seen as the piece de resistance, Nishimura-Yano (1995) conclusively

demonstrate the possibility of ergodically chaotic optimal accumulation in the case
[of] a two-sector model with Leontief production functions. [They] construct a
condition under which the optimal transition function is unimodal and expansive

of 162 and 166 items respectively, and that of the third, running to 49 pages. For a rapprochement
of trade and growth theory, see Fujio-Khan [14]; and for a synthesis stemming from the Oniki-Uzawa
model, Chen-Nishimura-Shimomura [7].

5See Chapter 9 reprinted in [3], and Figure 1 below. Also see Chapter 13 of [3], and the recurrence
of these theorems in [5, Section 6.2]. Even though our emphasis in this work is on optimal growth in
the two-sector model, we refer the reader to [6, Chapters 4-5] and [9, Chapter 6] for equilibrium growth.
For the impact of these classical theorems on modern political economy, see [28, subject index].

6See Figures 13.1 and 13.2 in Section 2 in Benhabib-Nishimura (1989) reprinted in [3, pp. 291-293].
7See Footnote 2 in of Nishimura-Yano (1993) reprinted in [29, p. 149]. To save on references, we

send the reader to the bibliography of the anthology.
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[and show] that the set of parameter values satisfying that condition is nonempty
no matter how weakly the future utilities are discounted.8

The direction that this (our) paper takes is, however, best summarized in the words
of Boldrin-Deneckere (1990).

What distinguishes the current paper from the [earlier] research is that we do not
construct “artificial” economies that exhibit a pre-chosen dynamics in equilibrium.
Rather, we start with a specification of technology and preferences, and derive the
implied dynamics. While this was also the object of Boldrin’s (1989) study, the
focus there is on providing criteria for the existence of chaotic paths in abstract
two-sector models [see also Deneckere (1988)]. Here we specify two analytically
tractable functional forms for the production technologies, and carry out a complete
parametric analysis of the resulting dynamics.9

This change in viewpoint emphasizing the desirability of a full working-out of a specific
model is important and in keeping with May’s 1976 [30] emphasis on showing complicated
dynamics from simple models. It has been carried forward in the work of Khan-Mitra and
Fujio.10 Indeed, various permutations of the specific versions of the two-sector model are
available in the antecedent literature: Leontief-Leontief, Cobb-Douglas-Cobb-Douglas,
and Leontief-Cobb-Douglas. In this paper, we name and study the two-sector version of
the Robinson-Shinkai-Leontief RSL model.

Leontief’s name is pervasive in the work on the two-sector model that we refer to in
the paragraphs above, but why Shinkai? why Robinson? As far as the first is concerned,
in a 1969 book-chapter titled “A neo-classical passage to growth equilibrium” Morishima
[33] already refers to the “Shinkai-Uzawa finding” and to the “Shinkai-Uzawa capital
intensity condition.” He writes:

In the conventional discussion of the stability of growth equilibrium in a two-sector
economy, the relative capital intensities of the two industries have served as a kind
of litmus paper with which to test whether the Silvery Equilibrium is stable or
not. Shinkai observed, for the first time, that the growth equilibrium is stable
if and only if the consumption-good industry is more capital-intensive than the
capital-good industry.”11

8For other examples concerning both topological and ergodic chaos based on the two-sector model
with Leontief production functions, (what we are calling the two-sector RSL model here), see Chapters
4, 8 and 9 in [29].

9 See the fourth paragraph of Boldrin-Deneckere (1990) reprinted in [3].
10For the first, see [17, 22] and their references; and for the second, see [10, 11, 12, 13].
11See [33, p. 45], and his book more generally for the definitions of his terms; also [38, pp. 51-63],

and his Lectures 1 and 2 in [32]. In [33], Morishima continues, “Uzawa replaced Shinkai’s production
functions of the Leontief type by the neo-classical ones which allow continuous substitution between
labour and capital, to find that the relative capital-intensity criterion is a sufficient condition for stability
but no longer a necessary condition — though Furuno later saw that the Shinkai-Uzawa finding should
be subject to a proviso that the introduction of a production lag narrows the stability region.”
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This is the reason that Fujio in her 2006 dissertation, and in subsequent work,12 refers
to the model as the Leontief-Shinkai (LS) model. However, what seemed to have been
missed is Robinson’s 1956 contribution. Already, in his 1960 article, Shinkai added a
“historical note.”

As the reader will find, our model has much in common with Mrs. Robinson’s
“simple model” of capital accumulation and Professor Morishima’s interpretation
of her model, and our equilibrium growth corresponds to her “golden age” (under
the hypothesis of no technical progress).13

The presentation of the two-sector technology in Robinson’s 1956 book can be found in
the extensive reviews of that work, the clearest being Barna’s [2], Lancaster’s [24] and
Worswick’s [46].14 However, it is important to bear in mind that we include her name
in the naming of both the RSS and RSL models, primarily because of the technological
specifications that can be found in her 1956 work, and not simply to use her name in an
empty valorization of our enquiry. It is clear that her interests were not in optimal and
equilibrium growth, as we take the terms to mean here, but rather in the functioning of a
capitalist economy in the macroeconomic short-run and in its leading to a disequilibrium
growth process in the long-run in which innovation, gestation lags and expectations play
a crucial role.15

But this focus on the two-sector technology for the justification of the inclusion
of Robinson in the naming of the RSL model blurs the distinction between descriptive
and optimal growth. In terms of optimal growth in the smooth neoclassical setting in
continuous time, the state of the art seems to be Haque’s 1970 [16] analysis.

In his pioneering essay [3], Srinivasan studied the problem of optimal growth in
the two-sector model under the assumption that the capital-intensity kC in the
consumption sector is larger at every wage-rental ratio than the capital intensity
kI in the investment sector. He proved the following interesting theorem: If the
initial capital-labour ratio is smaller (larger) than a certain critical ratio, then
along the optimal path specialization in investment (consumption) takes place
until the critical ratio is attained and then golden age is approached through non-
specialization. The optimal path has the special [Srinivasan] property that once
specialization is discarded in favour of non-specialization, the former does not re-
appear.

12See the references to Fujio in Footnote 10.
13There are only five references in [42]: one of these is to Robinson’s 1956 book, and the other to a

1958 unpublished note of Morishima.
14See [pp. 46-47][38] and [40], and in addition to Robinson herself, see [47], [15] and [26].
15See, for example, her evaluation of Meade’s book on two-sector growth in the Conclusion in [40],

the footnote to Uzawa in [40, p. 132], more generally, her reminiscences in [41], and the Harcourt-Kerr
introduction to the second edition of [37]. Also see [39] and her exchange with Stiglitz referred to in
Khan-Mitra [17].
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It is this factor-intensity assumption, and the Srinivasan property drawing on it, that
will constitute the background subtext to the results reported in the sequel.

So much for the framing of the two-sector RSL model in terms of the antecedent
literature. The question then arises as to how we contribute substantively and technically
to economic growth and to optimal economic dynamics through it. This can best be
answered in terms of the plan of the remaining part of the paper. Section 2 presents the
basics of the model. It reformulates the model in terms of the Gale-McKenzie reduced
form articulated in terms of capital stocks today, and of those tomorrow, and identifies
the marginal rate of transformation ζ between them as a crucial sufficiency statistic.
This marginal rate had not been identified earlier.16 Section 3 uses the methods of
discounted dynamic programming and offers the preliminary characterizations of the
optimal policy correspondence. It is by now well-understood that methods of dynamic
programming, while useful for characterization of the optimal trajectory, do not enable
the path itself to be fully characterized: one can only guess and verify. Section 4 uses
the value-loss approach of Brock-Mitra to pin down the optimal trajectory for the case
ζ ≤ 1. For the case ζ = 1, we obtain two-period cycles, whereas for the case, ζ < 1, we
obtain convergence to the golden-rule stock. This is of consequence in that, in contrast
to the antecedent literature, it is the case of ζ > 1 that is responsible for complicated
and chaotic dynamics. We collect our findings and conclude the paper in Section 5.
The detailed proofs are relegated as supplementary material collected in an Appendix in
Section 6.

2 The RSL Model of Choice of Technique

Even if we forego short- and intermediate-term macroeconomics, and focus on growth
and development, Joan Robinson can be seen to be motivated by the question of the
“choice of technique.” This was also the primary initial motivation of Khan-Mitra [17].
And so it stands to reason that we do not preclude the RSL model as not being able to
say anything regarding this question: it ought to be, as the RSS model, an important
special case of multi-sectoral capital theory. In this paper, however, we abstain from
these considerations and limit ourselves to the two-sector variant.

2.1 The two-sector RSL Model

We consider the two-sector Robinson-Shinkai-Leontief model of optimal economic growth
which employs the precise technological specification used in Nishimura-Yano ([34, 35]),
Fujio ([11, 12, 10, 13]) and the literature surveyed in Table 1. There are two production
sectors. One unit of consumption good is produced by one unit of labor and aC units

16See Table 1. This sufficiency statistic is due to Fujio [11] for the case of undiscounted optimal growth,
and builds on earlier work of Khan-Mitra [17] for the RSS model. Also see [31] and his references for
the Gale-McKenzie reduced form.
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of capital, and b units of investment goods are produced by one unit of labor and aI
units of capital. We only consider the case that the consumption good sector is more
capital-intensive than the investment good sector, that is,17

aC > aI . (1)

Capital cannot be consumed and depreciates at the rate d ∈ (0, 1). The case of
durable capital nests the RSS model and the Nishimura-Yano model as special or limiting
case. This consideration makes the dynamic optimization problem doubly difficult. The
amount of capital available at the beginning of next period is equal to the sum of the
current production of investment goods and the left-over capital after depreciation. A
constant amount of labor, normalized to be unity, is available in each time period t ∈ N,
where N is the set of non-negative integers. Thus, in the canonical formulation surveyed
in McKenzie (1986, 2002), the collection of production plans (x, x′), the amount x′ of
capital in the next period (tomorrow) from the amount x of capital available in the
current period (today), is given by the transition possibility set

Ω = {(x, x′) ∈ IR+ × IR+ : x′ − (1− d)x ≥ 0, x′ − (1− d)x ≤ bmin{1, x/aI}},

where IR+ is the set of non-negative real numbers. For any (x, x′) ∈ Ω, one can consider
the amount y of production of consumption goods, leading to a correspondence Λ : Ω −→
IR+ with

Λ(x, x′) = {y ∈ IR+ : 0 ≤ y ≤ (1/aC)(x− (aI/b)(x
′ − (1− d)x))

and 0 ≤ y ≤ 1− (1/b)(x′ − (1− d)x)}.

A felicity function, w : IR+ −→ IR, is linear and normalized to be equal to the
amount of consumption, i.e., w(y) = y. Finally, the reduced form utility function, u :
Ω −→ IR+, is defined on Ω such that

u(x, x′) = max{w(y) : y ∈ Λ(x, x′)}.

We assume that the future welfare is discounted with a discount factor ρ ∈ (0, 1).18

An economy E consists of a triple (Ω, u, ρ) and the following concepts apply to
it. A program from x0 is a sequence {xt, yt} such that for all t ∈ N, (xt, xt+1) ∈ Ω and
yt = max Λ(xt, xt+1). A program {xt, yt} is called stationary if for all t ∈ N, (xt, yt) =
(xt+1, yt+1). For all 0 < ρ < 1, a program {x∗t , y∗t } from x0 is said to be optimal if

∞∑
t=0

ρt[u(xt, xt+1)− u(x∗t , x
∗
t+1)] ≤ 0

for every program {xt, yt} from x0.

17The same assumption is imposed in [34] and [11]. We pursue the case for aC ≤ aI in a different
paper.

18For a comprehensive treatment of the undiscounted case (ρ = 1), see [12].
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2.2 The Modified Golden Rule

Consider the today-tomorrow diagram furnished as Figure 2. Note that the transition
possibility set Ω and the reduced-form felicity function u(·, ·) have nothing to do with
a discount factor. So do the indifference maps. The transition possibility set, Ω, is a
set LV OD and the indifference maps are kinked lines along with MV line; when it is
identical to LV O its utility level is zero.

The modified golden stock x̂ is shown as a solution to the following problem;

u(x̂, x̂) ≥ u(x, x′) for all (x, x′) ∈ Ω such that x ≤ (1− ρ)x̂+ ρx′. (2)

. The equation of the line RG is x′ = ρ−1x+ ρ−1(ρ− 1)x̂ specifies a constraint set. It is
easily seen that the modified golden-rule stock is exactly equal to the golden-rule stock.
It is due to the kinked indifference maps that the modified golden-rule stock is invariant
to changes in a discount factor.

In order to guarantee the existence of a nontrivial golden-rule stock, the line OV
must be steeper than RG, which is to say,

1/ρ < b/aI + (1− d) ≡ θ. (3)

We will impose the condition above in what follows.19 This condition ensures that our
technology is productive, i.e., there exists a production plan that can produce a positive
net amount of investment goods.

The modified golden rule is formally defined as a pair (x̂, p̂) ∈ R2
+ such that (x̂, x̂) ∈

Ω and
u(x̂, x̂) + (ρ− 1)p̂x̂ ≥ u(x, x′) + p̂(ρx′ − x) for all (x, x′) ∈ Ω. (4)

It is easily seen that, in the RSL model, free disposal, bounded paths, and the existence
of a stock expansible by the factor ρ−1 are satisfied. According to [31], then x̂ is the
stationary optimal capital stock.

We further introduce a key parameter

ζ ≡ b/(aC − aI)− (1− d)

which features prominently in the analysis of the two-sector RSL model. Under the
assumption that the consumption good section is more capital intensive, ζ > −1. ζ
can be interpreted as the marginal rate of transformation of capital between today and
tomorrow under full utilization of capital.20

The following proposition formalizes the observations from the simple geometry of
the today-tomorrow’s diagram.

19The RSS model can be viewed as a special case of the RSL model with aC = 1, aI = 0, and b = 1/a.
Since aI = 0, Condition 3 is always satisfied in the RSS model. Also see Condition 2.10 in [34] for the
same condition with d = 1.

20Note that the counterpart of ζ in the RSS model is ξ as in, for example, [21]. It is assumed that
ξ > 1 in [21]. For discussion about ξ ≤ 1, see [18].
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Proposition 1. There exists a modified golden rule, which is given by

(x̂, p̂) =

(
aC(ζ + 1− d)

ζ + 1
,

1

(aC − aI)(1 + ρζ)

)
.

2.3 The Zero Value-loss Line and the Iso Value-loss lines

The value-loss21 δρ(p̂,x̂)(x, x
′) at the golden-rule price system p̂ associated with one-period

plan (x, x′) is defined as the difference between the left-hand side and the right-hand side
of the inequality 4

δρ(p̂,x̂)(x, x
′) ≡ u(x̂, x̂) + (ρ− 1)p̂x̂− u(x, x′)− p̂(ρx′ − x) for all (x, x′) ∈ Ω. (5)

Lemma 1. There is no value loss when labor and capital are fully utilized.

The line MV in Figure 2 represents a locus of plans with full employment and full
capacity utilization. In the triangle V OM , there exits labor not utilized for production
of either sector and in the region LVMD, there exists excess capacity of capital. As
such, the line MV yields zero value-loss at the golden-rule price system p̂. This is to say
that MV is the von-Neumann facet.

Next, we shall show that the lines parallel to MV are iso-value-loss lines; any two
plans on the line have the same amount of value-losses. As an iso-value-loss line moves
away from MV line, the associated value-loss increases. With this property, we can see
that along the lines OV , MV and MD one-period value-loss is minimized for each given
x.

For a plan (x, x′) in the triangle MOV which lies below the MV line, we have
(1/aC)(x − (aI/b)(x

′ − (1 − d)x)) < 1 − (1/b)(x′ − (1 − d)x), so the level of utility is
written as u(x, x′) = x(b+ aI(1− d))/(aCb)− aIx′/(aCb). Then, the value-loss is:

δ(x, x′) =
b− aId
aCb

x̂+ p̂x̂(ρ− 1)− x(b+ aI(1− d))/(aCb) + aIx
′/(aCb)− p̂(ρx′ − x). (6)

The marginal change of value-loss with respect to x′ is ∂δ(x.x′)/∂x′ = aI/(aCb)− p̂ρ < 0.
For a plan (x, x′) in the region LVMD which lies above the MV line, we have

(1/aC)(x − (aI/b)(x
′ − (1 − d)x)) > 1 − (1/b)(x′ − (1 − d)x), so the level of utility is

written as u(x, x′) = 1− x′/b+ (1− d)x/b. Then, the value-loss is:

δ(x, x′) = −dx̂/b+ p̂x̂(ρ− 1) + x′/b− (1− d)x/b− p̂(ρx′ − x). (7)

The marginal change of value-loss with respect to x′ is ∂δ(x.x′)/∂x′ = 1/b− p̂ρ > 0. The
next result formally establishes this geometric insight, which will be frequently used in
our partial characterization of the optimal policy correspondence.

Lemma 2. aI/(aCb) < p̂ρ < 1/b.
21We shall abbreviate δρ(p̂,x̂)(x, x

′) by δρ(x, x′).
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3 The Dynamic Programming Approach

3.1 Preliminaries

In this subsection, we describe the dynamic programming approach with a value function
and a policy correspondence to delineate the optimal policy. We define a value function,
V : X → R by:

V (x) =
∞∑
t=0

ρtu(x(t), x(t+ 1)) (8)

where {x(t), y(t)} is an optimal program starting from x(0) ∈ X = (0,∞). The value
function is continuous. For each x ∈ X, the Bellman equation:

V (x) = max
x′∈Γ(x)

{u(x, x′) + ρV (x′)} (9)

holds where Γ(x) = {x′ : (x, x′) ∈ Ω}. For each x ∈ X, we denote by h(x) the set of
x′ ∈ Γ(x) which maximizes {u(x, x′)+ρV (x′)} among all x′ ∈ Γ(x). That is, the optimal
policy correspondence is described as,

h(x) = arg max
x′∈Γ(x)

{u(x, x′) + ρV (x′)} (10)

for each x ∈ X. A program {x(t), y(t)} from x ∈ X is an optimal program from x if and
only if it satisfies the equation: V (x(t)) = u(x(t), x(t+ 1)) + ρV (x(t+ 1)) for t ≥ 0.22

We now provide some useful properties of the value function which help us partially
characterize the optimal dynamics.

Lemma 3. The value function V is (i) concave and (ii) strictly increasing with x.

Lemma 4. The value function, V , satisfies the following properties: i) V (x)− V (x̂) ≤
p̂(x− x̂) and ii) V ′+(x̂) ≤ p̂ ≤ V ′−(x̂).

Since x̂ is the stationary optimal stock, we have

V (x̂) =
1− dx̂/b

1− ρ
=

b− daI
(b+ daC − daI)(1− ρ)

.

Before solving for the optimal policy correspondence, we provide the following
lemma to guide us to partition the set (0,∞) into sub-regions over which the optimal
dynamics tends to behave differently and will be characterized separately.

Lemma 5. If ζ > 0, then x̂/θ < aI < x̂ < aC < x̂/(1 − d). If ζ = 0, then x̂/θ = aI <
x̂ < aC = x̂/(1− d). If ζ < 0, then aI < x̂/θ < x̂ < x̂/(1− d) < aC .

We now turn to characterizing the optimal policy correspondence and the resulting
optimal dynamics for different values of ζ.

22We refer interested readers to chapter 4 of [25] for a general treatment and rigorous proofs of the
value function being well-defined, the existence of optimal program, and the value function being the
unique continuous solution to the Bellman equation.
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3.2 A Partial Characterization

In this subsection, we provide necessary conditions for the optimal policy correspondence
for the general parameter space and discuss the convergence property of the system when
ζ ≤ 1.

3.2.1 The Case of Positive ζ

In order to derive the optimal policy correspondence, we divide the state space into
the following three regions:23 (0, x̂/θ], (x̂/θ, x̂/(1 − d)), [x̂/(1 − d),∞). We first fully
characterize the optimal policy correspondence h, which is single-valued, for the first and
third region.

Lemma 6. Let ζ > 0. For x ∈ (0, x̂/θ], h(x) = {θx}.
Lemma 7. Let ζ > 0. For x ∈ [x̂/(1− d),∞), h(x) = {(1− d)x}.

The intuition behind Lemmas 6 and 7 is straightforward. If the initial capital stock
is sufficiently low, much lower than the golden rule stock, then it is optimal to accumulate
capital as quickly as possible and consequently, the economy fully specializes in producing
investment goods. On the other hand, if the initial capital stock is sufficiently high, much
higher than the golden rule stock, then it is optimal to reduce the capital stock as quickly
as possible and as a result, the economy fully specializes in producing consumption goods.

What remains to characterize is the middle region (x̂/θ, x̂/(1− d)). According to
Lemma 5, we can further divide the middle region into four subregions: (x̂/θ, aI ], (aI , x̂],
(x̂, aC ], (aC , x̂/(1− d)).

Proposition 2. Let ζ > 0. For x ∈ (x̂/θ, x̂/(1− d)), the optimal policy correspondence
h satisfies

h(x) ⊂


[x̂, θx] for x ∈ (x̂/θ, aI ]
[x̂, ζ(x̂− x) + x̂] for x ∈ (aI , x̂]
[ζ(x̂− x) + x̂, x̂] for x ∈ (x̂, aC ]
[(1− d)x, x̂] for x ∈ (aC , x̂/(1− d)).

.

Collecting the results above, we obtain the following characterization of the optimal
policy correspondence for ζ > 0.

Theorem 1. Let ζ > 0. The optimal policy correspondence h satisfies

h(x) ⊂ G(x) ≡



{θx} for x ∈ (0, x̂/θ]
[x̂, θx] for x ∈ (x̂/θ, aI ]
[x̂, ζ(x̂− x) + x̂] for x ∈ (aI , x̂]
[ζ(x̂− x) + x̂, x̂] for x ∈ (x̂, aC ]
[(1− d)x, x̂] for x ∈ (aC , x̂/(1− d)).
{(1− d)x} for x ∈ [x̂/(1− d),∞)

23By definition, θ > (1− d), so the three intervals are pairwise disjoint.
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.

The proposition is illustrated in Figure 3. For the middle region, we know that the
optimal policy correspondence has to be a selection from the two shaded triangles.

It should be noticed that the optimal policy correspondence h does not coincide
with the optimal policy correspondence of the RSS model as in [20] when aI → 0. The
sharp characterization of the optimal policy for x in (aI , x̂] in the RSS model hinges on
the fact that aI = 0.24

Similar to the RSS model, when 0 < ζ < 1, the optimal policy leads to global
convergence.

Corollary 1. If ζ ∈ (0, 1), the stock always converges to the golden rule stock x̂.

Moreover, we can show that, if ζ = 1, the stock converges to either the golden
rule stock x̂ or a two-period cycle. The proof follows from the proof of Corollary 1 with
slight modification. If θaI ≤ aC , for x ∈ [aI , x̂), or if aI ≤ (1 − d)aC , for x ∈ (x̂, aC ],
G(x) = [x̂, ζ(x̂ − x) + x̂] = [x̂, 2x̂ − x] and G2(x) = [(1 − ζ2)x̂ + ζ2x, x̂] = [x, x̂], which
could give rise to a two-period cycle with periodic points (x̂, 2x̂− x).

To further compare a policy that yields a two-period cycle with a straight-down-
to-turnpike policy, consider the case that θaI ≤ aC . Let x ∈ [aI , x̂]. Consider a program
under which the stock alternates between x and 2x̂ − x. The utility of this program is
given by

U1(x) =
u(x, 2x̂− x) + ρu(2x̂− x, x)

1− ρ2
=

(2− d)x

b(1 + ρ)
− 2(1− ρ+ ρd)x̂

b(1− ρ2)
+

1

1− ρ
.

Consider another program under which the stock starts from x and jumps to x̂ the next
period and stay at the golden rule stock thereafter. The utility of this program is given
by

U2(x) = u(x, x̂) +
ρu(x̂, x̂)

1− ρ
=

(
1

aC
+
aI(1− d)

aCb

)
x−

(
aI
aCb

+
ρd

(1− ρ)b

)
x̂+

ρ

1− ρ
.

By construction, U1(x̂) = U2(x̂) = (1− dx̂/b)/(1− ρ). Moreover,

∂U1(x)

∂x
=

2− d
b(1 + ρ)

=
b+ (2− d)aI
baC(1 + ρ)

=
aI(1 + θ)

baC(1 + ρ)
<
aIθ

baC
=

1

aC
+
aI(1− d)

aCb
=
∂U2(x)

∂x
,

where the second equality follows from ζ = 1 and the inequality follows from Condition
3. Since ∂U1(x)/∂x < ∂U2(x)/∂x and U1(x̂) = U2(x̂), we must have U1(x) > U2(x) for
x in [aI , x̂), which suggests that the two-period policy dominates the straight-down-to-
turnpike policy for ζ = 1 and x in [aI , x̂).

24See the proof of their Lemma 2. For a sharp characterization of the optimal dynamics of the RSS
model, also see [21] and especially their Figure 1.
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3.2.2 The Case of Non-Positive ζ

For ζ ≤ 0, the characterization of high and low initial stocks is the same, while charac-
terization of the middle range becomes simpler.

Proposition 3. Let ζ ≤ 0. The optimal policy correspondence h satisfies

h(x) ⊂


{θx} for x ∈ (0, aI ]
[ζ(x̂− x) + x̂, x̂] for x ∈ (aI , x̂]
[x̂, ζ(x̂− x) + x̂] for x ∈ (x̂, aC)
{(1− d)x} for x ∈ [aC ,∞)

(11)

The proposition is illustrated in Figure 4, with the two shaded triangles indicating
the indeterminate region for the optimal policy. Taking into account the transition
possibility set Ω, the optimal policy correspondence for the middle range can further be
sharpened as

h(x) ⊂
{

[ζ(x̂− x) + x̂,min{x̂, (1− d)x+ b}] for x ∈ (aI , x̂]
[max{x̂, (1− d)x}, ζ(x̂− x) + x̂] for x ∈ (x̂, aC)

(12)

Following the similar argument for Corollary 1, the following corollary follows from
Proposition 3 and the fact that ζ > d− 1 > −1.

Corollary 2. If ζ ≤ 0, the stock converges to the golden rule stock x̂ monotonically.

4 The Value-Loss Approach

4.1 Preliminaries

In this section, based on the value-loss approach as in [18], we sharpen our character-
ization of the optimal dynamics. In particular, we completely pin down the optimal
policy correspondence for ζ ≤ 1 and discuss the bifurcation of the optimal policy corre-
spondence with respect to the discount factor. It is worth emphasizing that this type of
bifurcation analysis, as in [21], is conceptually different from the bifurcation analysis in
the literature of the non-linear dynamics which focuses on primarily how the property
of the dynamics of a given map changes with the parameter of interest.

We first restate the result described in Section 5 of [18].25

25The proof of the result see their appendix. The main idea is to establish the following equation

∞∑
t=0

ρt
[
u(x∗t , x

∗
t+1)− u(xt, xt+1)

]
=

∞∑
t=0

ρt
[
δρ(xt, xt+1)− δρ(x∗t , x∗t+1)

]
,

for {xt, yt} and {x∗t , y∗t } that start from the same initial stock.
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Lemma 8. For all 0 < ρ < 1, a program {x∗t , y∗t } from x0 is optimal if and only if

∞∑
t=0

ρt[δρ(xt, xt+1)− δρ(x∗t , x∗t+1)] ≥ 0

for every program {xt, yt} from x0.

The lemma says that, in order to find the optimal program that maximizes the
total discounted utility, it is equivalent to finding a program that minimizes the total
discounted value loss.

4.2 A Complete Characterization

4.2.1 The Case of Non-Positive ζ

According to Lemma 1, we know that if (x, x′) satisfies x′ = ζ(x̂−x) + x̂ for x ∈ [aI , aC ],
there is full utilization of resources and thus, the one-period value loss is zero. Further
suggested by Lemma 8, we know that if a program yields zero total value loss, it must
be optimal. In light of this insight, we can now characterize the optimal policy function
for ζ ≤ 0.

Proposition 4. Let ζ ≤ 0. The optimal policy correspondence is single valued, given by

h(x) =


{θx} for x ∈ (0, aI ]
{ζ(x̂− x) + x̂} for x ∈ (aI , aC)
{(1− d)x} for x ∈ [aC ,∞)

(13)

The proof of this result is relatively straightforward. We first show that for the
initial stock x in the middle range (aI , aC), if the next period stock follows ζ(x̂− x) + x̂,
then the stock will always stay on the full utilization arm, thus leading to zero total value
loss. Any deviation from this policy inevitably leads to positive value loss and therefore
is not optimal. For the initial stock that is outside the middle range, we show that the
unique optimal policy is to converge to the middle range as fast as possible. Any delay
leads to additional value loss.

We turn to sharpening the optimal policy correspondence for 0 < ζ ≤ 1, which
turns out to be much more complicated.

4.2.2 The Case of 0 < ζ ≤ 1

Proposition 5. Let ζ ∈ (0, 1]. There are three possible cases:
(i) If aC ≥ aIθ and aC(1− d) ≥ aI , then

h(x) =


{θx} for x ∈ (0, aI)
{ζ(x̂− x) + x̂} for x ∈ [aI , aC ]
{(1− d)x} for x ∈ (aC ,∞)

.
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(ii) If aC < aIθ and aC(1− d) ≥ aI , then

h(x) ⊂


{θx} for x ∈ (0, aC/θ]
[aC ,min{θx, ζ(x̂− x) + x̂}] for x ∈ (aC/θ, aC(ζ − d)/ζ)
{ζ(x̂− x) + x̂} for x ∈ [aC(ζ − d)/ζ, aC ]
{(1− d)x} for x ∈ (aC ,∞)

.

(iii) If aC ≥ aIθ and aC(1− d) < aI , then

h(x) ⊂


{θx} for x ∈ (0, aI)
{ζ(x̂− x) + x̂} for x ∈ [aI , aC(1 + (1− d)/ζ)− aI/ζ]
[max{ζ(x̂− x) + x̂, (1− d)x}, aI ] for x ∈ (aC(1 + (1− d)/ζ)− aI/ζ, aI/(1− d))
{(1− d)x} for x ∈ [aI/(1− d),∞)

.

Remark 1. In the RSS model, aI = 0, so aC(1− d) ≥ aI always holds. For the special
case of our characterization result in the RSS model, see Section 5 of [18]. It should be
noted that under this extreme assumption that aI = 0, sharper characterization could
be obtained for ζ > 1.

Remark 2. Given this refined characterization for ζ ≤ 1, the optimal dynamics as in
Corollaries 1 can be easily obtained. In fact, when ζ = 1, the result can be strengthened:
the system almost always converges to a two-period cycle.

Case (i) is the simplest case of Proposition 5. The optimal policy is illustrated as
the bold line in Figure 5. Similar to the case of ζ ≤ 0, the map consists of two arms
of specialization and the middle arm of full resource utilization. The proof idea is also
similar. Under the condition of Case (i), we show that full utilization of resource for
any x starting from the middle range leads to zero value loss. Case (ii), as illustrated
in Figure 6, is symmetric to Case (iii), as illustrated in Figure 7. The optimal policy
has been pinned down except for the small shaded triangle. The intuition is that if
the initial stock starts from the range that gives rise to the triangle, full utilization of
resource, despite having a zero value loss for the current period, pushes the next period
stock out of the middle range, and therefore, the value loss starting from the next period
must be positive. There is a tradeoff between suffering from the value loss this period in
order to stay on the middle range and delaying the value loss to the next period, which
naturally hinges on the discount factor. The next two propositions fully characterize the
optimal policy correspondence for case (ii) and (iii) in Proposition 5, demonstrating an
intriguing bifurcation pattern of how optimal policy changes with the discount factor.
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Theorem 2. Suppose ζ ∈ (0, 1], aC < aIθ, and aC(1 − d) ≥ aI . Let t0 be the smallest
integer such that aIθ(1 − d)t0 < aC. Let ρ̄t be the unique positive root to the following
equation

aCb(1− d)tρt+1 − (aC − aI)aIζρ− aI(aC − aI) = 0,

for t being the integer satisfying 1 ≤ t ≤ t0. Then ρ̄t strictly increases with t and ρ̄1 > 1/θ.
Moreover, the optimal policy correspondence for x ∈ (aC/θ, aC(ζ − d)/ζ) depends on ρ,
which is given by

h(x) =


{aC} for ρ < ρ̄1

[aC ,min{ζ(x̂− x) + x̂, θx}] for ρ = ρ̄1

min{ζ(x̂− x) + x̂, θx} for ρ > ρ̄1

,

for t0 = 1, and

h(x) =


{aC} for ρ < ρ̄1

[min{ζ(x̂− x) + x̂, θx, aC/(1− d)t−1},
min{ζ(x̂− x) + x̂, θx, aC/(1− d)t}] for ρ = ρ̄t, t = 1, ..., t0
min{ζ(x̂− x) + x̂, θx, aC/(1− d)t} for ρ̄t+1 > ρ > ρ̄t, t = 1, ..., t0 − 1
min{ζ(x̂− x) + x̂, θx} for ρ > ρ̄t0

,

for t0 > 1.

This proposition obtains precisely the optimal policy correspondence for x ∈
(aC/θ, aC(ζ − d)/ζ) of case (ii) in Proposition 5. Generically, the optimal policy cor-
respondence is a function. To understand the characterization, we illustrate an exam-
ple of t0 = 3 in Figure 8. When ρ < ρ̄1, the optimal policy for the small interval
(aC/θ, aC(ζ − d)/ζ) is represented by the segment AB. When ρ = ρ̄1, the optimal pol-
icy is represented by the trapezoid ADEB. When ρ̄1 < ρ < ρ̄2, the optimal policy is
represented by three segments: AD, DE, and EB. When ρ = ρ̄2, the optimal policy is
represented by two segments, AD and EB, and a trapezoid DFGE. When ρ̄2 < ρ < ρ̄3,
the optimal policy is represented by three segments again: AF, FG, and GB. When
ρ = ρ̄3, the optimal policy is represented by two segments, AF and GB, and a triangle,
FCG. Last, when ρ > ρ̄3, the optimal policy is represented by two segments, AC and CB,
which coincides with Case (i) in Proposition 5. Even though it looks complicated, this
bifurcation pattern is consistent with our intuition: When the discount factor increases,
the planner is more willing to sacrifice today’s consumption for tomorrow’s gain and the
optimal policy gets closer to the case that the economy converges as soon as possible to
the full utilization arm.

The main proof idea of this proposition is again based on the value loss approach.
We first note that Proposition 5 implies that the economy only suffers from positive value
loss for finite periods for any initial stock. Then the key step is to calculate the total
discounted value loss for up to t0 + 1 periods for an initial stock in (aC/θ, aC(ζ − d)/ζ).
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The technical complication arises from the fact that the number of periods with positive
value loss depends crucially on the policy chosen for the initial stock. We utilize the
relationship between the value loss for the finite periods and the discount factor to
finally establish the optimality.

Since ρ̄1 > 1/θ, there always exists a ρ sufficiently close to 1/θ with ρ̄1 > ρ > 1/θ
such that the optimal policy function has a flat top. Moreover, notice that it is possible
to have ρ̄1 ≥ 1. For example, consider aI = 1, aC = 1.5, d = 0.25, b = 0.8. It can be
verified that all the conditions in Proposition 2 are satisfied and we have t0 = 1 with
ρ̄1 ≈ 1.018 > 1. According to Proposition 2, the optimal policy correspondence has a
flat top with h(x) = {aC} for any x ∈ (aC/θ, aC(ζ − d)/ζ). For a numerical example
that the optimal policy correspondence bifurcates with respect to the discount factor,
consider aI = 1, aC = 2, d = 0.05, b = 1.3. Again, we can verify that all the conditions
in Proposition 2 are satisfied and we have t0 = 3 with ρ̄1 ≈ 0.711, ρ̄2 ≈ 0.818, and
ρ̄3 ≈ 0.875.

We now refine the characterization for the optimal dynamics for case (iii) in Propo-
sition 5.

Theorem 3. Suppose ζ ∈ (0, 1], aC ≥ aIθ, and aC(1 − d) < aI . Let t0 be the smallest
integer such that aC(1 − d)θt0 > aI . Let ρ̃t be the unique positive root to the following
equation

bθtρt+1 − (aC − aI)ζρ− (aC − aI) = 0,

for t being the integer satisfying 1 ≤ t ≤ t0. Then ρ̃t strictly decreases with t and
ρ̃t0 > 1/θ. Moreover, the optimal policy correspondence for x ∈ (aC(1 + (1 − d)/ζ) −
aI/ζ, aI/(1− d)) depends on ρ, which is given by

h(x) =


{aI} for ρ > ρ̃1

[max{ζ(x̂− x) + x̂, (1− d)x}, aI ] for ρ = ρ̃1

max{ζ(x̂− x) + x̂, (1− d)x} for ρ < ρ̃1

,

for t0 = 1, and

h(x) =


{aI} for ρ > ρ̃1

[max{ζ(x̂− x) + x̂, (1− d)x, aI/θ
t},

max{ζ(x̂− x) + x̂, (1− d)x, aI/θ
t−1}] for ρ = ρ̃t, t = 1, ..., t0

max{ζ(x̂− x) + x̂, (1− d)x, aI/θ
t} for ρ̃t+1 < ρ < ρ̃t, t = 1, ..., t0 − 1

max{ζ(x̂− x) + x̂, (1− d)x} for ρ < ρ̃t0

,

for t0 > 1.

The proof idea is similar to the previous one and the characterization result also
looks symmetric. An example for t0 = 3 is illustrated in Figure 9.

Since ρ̃t0 > 1/θ, there always exists a ρ sufficiently close to 1/θ with ρ̃t0 > ρ > 1/θ
such that the optimal policy has a V-shaped bottom. Again, notice that it is possible to
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have ρ̃t0 ≥ 1. For example, consider aI = 1, aC = 1.3, d = 0.25, b = 0.3. It can be verified
that all the conditions in Proposition 3 are satisfied and we have t0 = 1 with ρ̃1 ≈ 1.102 >
1. According to Proposition 3, the optimal policy correspondence has a V-shaped bottom
with h(x) = max{ζ(x̂−x)+ x̂, (1−d)x} for any x ∈ (aC(1+(1−d)/ζ)−aI/ζ, aI/(1−d)).
For a numerical example that the optimal policy correspondence bifurcates with respect
to the discount factor, consider aI = 1, aC = 3, d = 0.95, b = 2. Again, we can verify
that all the conditions in Proposition 3 are satisfied and we have t0 = 3 with ρ̃1 ≈ 0.968,
ρ̃2 ≈ 0.740, and ρ̃3 ≈ 0.659.

Even though we have shown that there is global convergence for the optimal policy
when ζ < 1, our analysis above suggests that the optimal policy itself might experience
cascade of changes with the discount factor. This stands in contrast with the bifurcation
result of the RSS model as in [21]. As a special case of our model, they demonstrate
that the bifurcation only arises when ζ > 1.

5 Discussion and Open Questions

In this paper, we provide a partial characterization of the optimal policy correspondence
of the RSL model, and based on the value-loss approach, we fully characterize the optimal
policy for ζ ≤ 1. The characterization results bring out how the optimal policy bifurcates
with respect to the discount factor. And so a natural question arises as to the nature of
the optimal policy for the case ζ > 1 even for the case of a capital-intensive consumption
good sector. We hope to turn to this in a future investigation.

6 Appendix: Proofs of the Results

Proof of Proposition 1:
Since aC > aI , ζ > d − 1, which implies (x̂, p̂) ∈ R2

+. Given Condition 3, b/aI >
d + 1/ρ − 1 > d, where the second inequality stems from 0 < ρ < 1. Since b/aI > d,
dx̂ = dbaC/(daC + b − daI) < b and dx̂ < bx̂/aI . Therefore, dx̂ < bmin{1, x̂/aI}. Then
we must have (x̂, x̂) ∈ Ω.

Consider y in Λ(x, x′). Define

α(x, x′, y) = (1/aC)(x− (aI/b)(x
′ − (1− d)x))− y,

β(x, x′, y) = 1− (1/b)(x′ − (1− d)x)− y.

We have
y + p̂(ρx′ − x) = (1− A)− Aα(x, x′, y)− (1− A)β(x, x′, y),

where A ≡ aC(1−ρ(1−d))
(aC−aI)(1+ρζ)

. Since aC > aI (Condition 1), ζ > −1, and we know 0 < ρ < 1

and 0 < d < 1, we have A > 0. Given Condition 3, A < 1. By construction, α(x, x′, y) ≥ 0
and β(x, x′, y) ≥ 0, which implies

y + p̂(ρx′ − x) ≤ 1− A.
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Let ŷ = 1− (d/b)x̂ = (1/aC)(1−aId/b)x̂ = (b−daI)/(b−daI +daC) > 0. We have
ŷ ∈ Λ(x̂, x̂) and α(x̂, x̂, ŷ) = β(x̂, x̂, ŷ) = 0. Therefore, ŷ = u(x̂, x̂) and ŷ + (ρ − 1)p̂x̂ =
1− A, which implies

u(x̂, x̂) + (ρ− 1)p̂x̂ ≥ y + p̂(ρx′ − x) for all (x, x′) ∈ Ω and y ∈ Λ(x, x′). (14)

Since u(x, x′) = max Λ(x, x′), we then obtain the desired inequality

u(x̂, x̂) + (ρ− 1)p̂x̂ ≥ u(x, x′) + p̂(ρx′ − x) for all (x, x′) ∈ Ω. (15)

Proof of Lemma 1:
When labor and capital are fully utilized, we must have

(1/aC)(x− (aI/b)(x
′ − (1− d)x)) = 1− (1/b)(x′ − (1− d)x).

Let y = (1/aC)(x − (aI/b)(x
′ − (1 − d)x)) = 1 − (1/b)(x′ − (1 − d)x). Following the

argument in the proof of Proposition 1, we then have α(x, x′, y) = β(x, x′, y) = 0, and
we have shown α(x̂, x̂, ŷ) = β(x̂, x̂, ŷ) = 0, so u(x̂, x̂) + (ρ− 1)p̂x̂ = u(x, x′) + p̂(ρx′ − x),
or equivalently, δρ(x, x′) = 0.
Proof of Lemma 2:

Given Condition 3, we have ρb > aI − ρ(1− d)aI , and since we know aC > aI , we
must have

ρ

(aC − aI) + ρb− ρ(1− d)(aC − aI)
>

aI
aCb

,

where the left hand side is equal to p̂ρ.
Moreover, since aC > aI , ρ ∈ (0, 1) and d ∈ (0, 1), (aC − aI)(1 − ρ(1 − d)) > 0,

which implies

p̂ρ =
ρ

(aC − aI) + ρb− ρ(1− d)(aC − aI)
<

1

b
.

Proof of Lemma 3:
For (i), consider x1 and x2 in X and λ in (0, 1). Let x3 = λx1 + (1 − λ)x2. Let

{xi(t), yi(t)} be an optimal program starting from xi for i = 1, 2, 3. By construction, Ω
is convex. To see u being concave, letting x = λx1(t) + (1 − λ)x2(t) and x′ = λx1(t +
1) + (1− λ)x2(t+ 1), we have

u(x, x′) = min{(1/aC)(x− (aI/b)(x
′ − (1− d)x)), 1− (1/b)(x′ − (1− d)x)}

≥ λmin{(1/aC)(x1(t)− (aI/b)(x1(t+ 1)− (1− d)x1(t))), 1− (1/b)(x1(t+ 1)− (1− d)x1(t))}
+(1− λ) min{(1/aC)(x2(t)− (aI/b)(x2(t+ 1)− (1− d)x2(t))), 1− (1/b)(x2(t+ 1)− (1− d)x2(t))}
= λu(x1(t), x1(t+ 1)) + (1− λ)u(x2(t), x2(t+ 1)).

Since u is concave, we have

λV (x1) + (1− λ)V (x2) ≤
∞∑
t=0

ρtu(λx1(t) + (1− λ)x2(t), λx1(t+ 1) + (1− λ)x2(t+ 1))

≤ V (λx1 + (1− λ)x2),
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where the second inequality follows from the fact that {λx1(t)+(1−λ)x2(t)}∞t=0 generates
a program starting from x3 = λx1 + (1− λ)x2.

For (ii), consider two initial stocks, x1 and x2 with x1 < x2. Let x′1 ∈
arg maxx′∈Γ(x1){u(x1, x

′) + ρV (x′)}. We then have V (x1) = u(x1, x
′
1) + ρV (x′1). By the

optimality of V , V (x2) ≥ u(x2, x
′
1) + ρV (x′1) > u(x1, x

′
1) + ρV (x′1) = V (x1), where the

second inequality follows from u(x, x′) being strictly increasing with x.
Proof of Lemma 4:

For i), based on the definition of the value function,

V (x)− V (x̂) =
∞∑
t=0

ρt[u(x(t), x(t+ 1))− u(x̂, x̂)]

≤
∞∑
t=0

ρt[(ρ− 1)p̂x̂− p̂(ρx(t+ 1)− x(t))]

= (ρ− 1)p̂x̂/(1− ρ) + p̂x(0) = p̂(x− x̂)

where x = x(0) and the inequality follows from Equation 4.
For ii), take x such as x = x̂ + ε for ε > 0. Letting ε → 0, we obtain V ′+(x̂) ≤ p̂.

Similarly, take x such as x = x̂− ε for ε > 0. Letting ε→ 0, we obtain p̂ ≤ V ′−(x̂).
Proof of Lemma 5:

Condition 1 implies ζ > d− 1, which guarantees x̂ = aC(ζ + 1− d)/(ζ + 1) < aC .
Condition 3 implies b > daI and we know aC > aI , so we have

x̂− aI =
aCb

aCd− aId+ b
− aI =

(aC − aI)(b− daI)
aCd− aId+ b

> 0.

Therefore, x̂ > aI .
So far we have shown that aI < x̂ < aC holds for any ζ.
We now consider the relationship between x̂/(1 − d) and aC . Since x̂/(1 − d) =

aC(ζ+1−d)/(ζ+1−d−dζ), x̂/(1−d) > aC . if and only if ζ > 0. If ζ = 0, x̂/(1−d) = aC .
If ζ < 0, x̂/(1− d) < aC , but x̂/(1− d) > x̂ still holds because d > 0.

Last, we consider the relationship between x̂/θ and aI .

θaI − x̂ = b+ (1− d)aI −
aC(ζ + 1− d)

ζ + 1

= ζ(aC − aI) + (1− d)aC −
aC(ζ + 1− d)

ζ + 1

= ζ

(
aC − aI −

aCd

ζ + 1

)
=

ζ

ζ + 1
(b+ d(aC − aI)− aCd)

=
ζ

ζ + 1
(b− daI) .
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Hence, aI > x̂/θ if and only if ζ > 0. If ζ = 0, aI = x̂/θ. If ζ < 0, aI < x̂/θ, but x̂/θ < x̂
still holds because θ > 1 according to Condition 3.
Proof of Lemma 6:

Suppose on the contrary there exists x ∈ (0, x̂/θ] and z ∈ h(x) such that z 6= θx.
Since ζ > 0, according to Lemma 5, x ≤ x̂/θ < aI . Then we must have z < θx, and

V (x) = u(x, z) + ρV (z) ≥ u(x, θx) + ρV (θx).

Rearranging the equation, we have

u(x, z)−u(x, θx) ≥ ρ(V (θx)−V (z)) ≥ ρV ′−(θx)(θx− z) ≥ ρV ′−(x̂)(θx− z) ≥ ρp̂(θx− z),

where the second inequality follows from concavity of V , the third inequality follows
from concavity of V and the fact that θx ≤ x̂ for x ∈ (0, x̂/θ], and the last inequality
follows from Lemma 4 ii).

By the definition of u, and given that x ∈ (0, x̂/θ], we have

u(x, z)− u(x, θx) = (1/aC)[x− (aI/b)(z − (1− d)x)] =
aI
baC

(θx− z) < p̂ρ(θx− z),

where the last inequality follows from Lemma 2. Since we have shown that u(x, z) −
u(x, θx) ≥ ρp̂(θx− z). This leads to a contradiction and establishes the desired result.
Proof of Lemma 7:

Suppose on the contrary there exists x ∈ [x̂/(1 − d),∞) and z ∈ h(x) such that
z 6= (1− d)x. Then we must have z > (1− d)x, and

V (x) = u(x, z) + ρV (z) ≥ u(x, (1− d)x) + ρV ((1− d)x).

Rearranging the equation, we have

u(x, (1− d)x)− u(x, z) ≤ ρ(V (z)− V ((1− d)x)) ≤ ρV ′+((1− d)x)(z − (1− d)x)

≤ ρV ′+(x̂)(z − (1− d)x) ≤ ρp̂(z − (1− d)x),

where the second inequality follows from concavity of V , the third inequality follows
from concavity of V and the fact that x̂ ≤ (1− d)x, and the last inequality follows from
Lemma 4 ii).

By the definition of u, and given that x ∈ [x̂/(1− d),∞), we have

u(x, (1− d)x)− u(x, z) = (z − (1− d)x)/b > p̂ρ(z − (1− d)x),

where the last inequality follows from Lemma 2. Since we have shown that u(x, (1 −
d)x)−u(x, z) ≤ ρp̂(z−(1−d)x). This leads to a contradiction and establishes the desired
result.
Proof of Lemma 2:
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We proceed by going over each subregion.
Subregion (x̂/θ, aI ]:
Suppose on the contrary there exists x ∈ (x̂/θ, aI ] and z ∈ h(x) such that z /∈

[x̂, θx]. Then we must have z < x̂. By the optimality of z,

V (x) = u(x, z) + ρV (z) ≥ u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, z)− u(x, x̂) ≥ ρ(V (x̂)− V (z)) ≥ ρV ′−(x̂)(x̂− z) ≥ ρp̂(x̂− z),

where the second inequality follows from concavity of V and the third inequality follows
from Lemma 4 ii).

By the definition of u, and given that x ∈ (x̂/θ, aI ], we have

u(x, z)− u(x, x̂) ≤ aI
baC

(x̂− z) < p̂ρ(x̂− z),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, z)−u(x, x̂) ≥ ρp̂(x̂−z). This leads to a contradiction

and establishes the desired result.
Subregion (aI , x̂]:
Consider (aI , x̂].26 Suppose on the contrary there exists x ∈ (aI , x̂] and z ∈ h(x)

such that z /∈ [x̂, ζ(x̂−x)+x̂]. There are two possible cases: (i) z < x̂; (ii) z > ζ(x̂−x)+x̂.
Consider (i) z < x̂. We have

V (x) = u(x, z) + ρV (z) ≥ u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, z)− u(x, x̂) ≥ ρ(V (x̂)− V (z)) ≥ ρV ′−(x̂)(x̂− z) ≥ ρp̂(x̂− z),

where the second inequality follows from concavity of V and the third inequality follows
from Lemma 4 ii).

By the definition of u, and given that x ∈ (aI , x̂], we have

u(x, z)− u(x, x̂) ≤ aI
baC

(x̂− z) < p̂ρ(x̂− z),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, z)−u(x, x̂) ≥ ρp̂(x̂−z). This leads to a contradiction

and establishes the desired result.

26This is the range of (0, x̂] in the RSS model. When aI = 0, the optimal policy correspondence can
be further reduced to a function. For a complete characterization for x ∈ (aI , x̂] in the RSS model, see
Lemma 2 in [20].
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Consider (ii) z > ζ(x̂− x) + x̂. We have

V (x) = u(x, z) + ρV (z) ≥ u(x, ζ(x̂− x) + x̂) + ρV (ζ(x̂− x) + x̂).

Rearranging the equation, we have

u(x, ζ(x̂− x) + x̂)− u(x, z) ≤ ρ(V (z)− V (ζ(x̂− x) + x̂))

≤ ρV ′+(ζ(x̂− x) + x̂)(z − (ζ(x̂− x) + x̂))

≤ ρV ′+(x̂)(z − (ζ(x̂− x) + x̂)) ≤ ρp̂(z − (ζ(x̂− x) + x̂))

where the second inequality follows from concavity of V , the third inequality follows from
concavity of V and the fact that ζ(x̂− x) + x̂ ≥ x̂ for x ∈ (aI , x̂], and the last inequality
follows from Lemma 4 ii).

By the definition of u, and given that x ∈ (aI , x̂], we have

u(x, ζ(x̂− x) + x̂)− u(x, z) ≥ (1/b)(z − (ζ(x̂− x) + x̂)) > p̂ρ(z − (ζ(x̂− x) + x̂)),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, (ζ(x̂− x) + x̂))− u(x, z) ≤ ρp̂(z − (ζ(x̂− x) + x̂)).

This leads to a contradiction and establishes the desired result.
Subregion (x̂, aC ]:
Suppose on the contrary there exists x ∈ (x̂, aC ] and z ∈ h(x) such that z /∈

[ζ(x̂− x) + x̂, x̂]. There are two possible cases: (i) z > x̂; (ii) z < ζ(x̂− x) + x̂.
Consider (i) z > x̂. We have

V (x) = u(x, z) + ρV (z) ≥ u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, x̂)− u(x, z) ≤ ρ(V (z)− V (x̂)) ≤ ρV ′+(x̂)(z − x̂) ≤ ρp̂(z − x̂),

where the second inequality follows from concavity of V and the last inequality follows
from Lemma 4 ii).

By the definition of u, and given that x ∈ (x̂, aC ], we have

u(x, x̂)− u(x, z) ≥ (1/b)(z − x̂) > p̂ρ(z − x̂),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, x̂)−u(x, z) ≤ ρp̂(z−x̂). This leads to a contradiction

and establishes the desired result.
Consider (ii) z < ζ(x̂− x) + x̂. We have

V (x) = u(x, z) + ρV (z) ≥ u(x, ζ(x̂− x) + x̂) + ρV (ζ(x̂− x) + x̂).
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Rearranging the equation, we have

u(x, z)− u(x, ζ(x̂− x) + x̂) ≥ ρ(V (ζ(x̂− x) + x̂)− V (z))

≥ ρV ′−(ζ(x̂− x) + x̂)((ζ(x̂− x) + x̂)− z)

≥ ρV ′−(x̂)((ζ(x̂− x) + x̂)− z) ≥ ρp̂((ζ(x̂− x) + x̂)− z)

where the second inequality follows from concavity of V , the third inequality follows
from concavity of V and the fact that ζ(x̂ − x) + x̂ ≤ x̂ for x ∈ (x̂, aC ], and the last
inequality follows from Lemma 4 ii).

By the definition of u, and given that x ∈ (x̂, aC ], we have

u(x, z)− u(x, ζ(x̂− x) + x̂) ≤ aI
aCb

((ζ(x̂− x) + x̂)− z) < p̂ρ((ζ(x̂− x) + x̂)− z),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, z)− u(x, (ζ(x̂− x) + x̂)) ≥ ρp̂((ζ(x̂− x) + x̂)− z).

This leads to a contradiction and establishes the desired result.
Subregion (aC , x̂/(1− d)):
Last, we consider (aC , x̂/(1 − d)). Suppose on the contrary there exists x ∈

(aC , x̂/(1 − d)) and z ∈ h(x) such that z /∈ [(1 − d)x, x̂]. Then we must have z > x̂.
By optimality of z,

V (x) = u(x, z) + ρV (z) ≥ u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, x̂)− u(x, z) ≤ ρ(V (z)− V (x̂)) ≤ ρV ′+(x̂)(z − x̂) ≤ ρp̂(z − x̂),

where the second inequality follows from concavity of V , and the last inequality follows
from Lemma 4 ii).

By the definition of u, and given that x ∈ (aC , x̂/(1− d)), we have

u(x, x̂)− u(x, z) ≥ (1/b)(z − x̂) > p̂ρ(z − x̂),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, x̂)−u(x, z) ≤ ρp̂(z−x̂). This leads to a contradiction

and establishes the desired result.
Proof of Corollary 1:

First, h(x̂) = {x̂}. If the initial stock is the golden rule stock, the system will stay
at the golden rule stock. To see the dynamics for the initial stock x 6= x̂, we rewrite
ζ < 1 more explicitly as

b

aC − aI
−(1−d) < 1⇔ b−(1−d)(aC−aI) < aC−aI ⇔ [θaI−aC ]+[aI−(1−d)aC ] < 0,
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where the last inequality suggests either (i) θaI < aC or (ii) aI < (1− d)aC (or both).
Consider (i) θaI < aC . Suppose x ∈ [aI , x̂). We know G(x) = [x̂, ζ(x̂−x)+x̂]. Since

θaI < aC , G(x) ⊂ [x̂, θaI ] ⊂ [x̂, aC ], and therefore, G2(x) = [(1 − ζ2)x̂ + ζ2x, x̂]. Since
ζ ∈ (0, 1) and x < x̂, we have (1−ζ2)x̂+ζ2x > x. This implies that limt→∞G

2t(x) = {x̂}.
Since limx→x̂ ζ(x̂ − x) + x̂ = x̂, we must have limt→∞G

2t+1(x) = {x̂}. This leads to the
desired conclusion that x converges to x̂ for x ∈ [aI , x̂). Since limt→∞G

t(x) = {x̂} for
any x ∈ [aI , x̂), limt→∞G

t(x) = {x̂} for any x ∈ G([aI , x̂)) = [x̂, θaI ]. Further, since
G([x̂/θ, aI ]) = [x̂, θaI ], the system must converge for any x in [x̂/θ, aI ]. Since we know
that h(x) = {θx} for x in (0, x̂/θ), for any x in (0, x̂/θ), after finite periods, the stock
must enter the region [x̂/θ, x̂), thus leading to convergence. So far we have shown that
the system converges for any x in (0, θaI ]. According to Proposition 1, for any x greater
than x̂, after finite periods, the stock must be below x̂, again according to what we have
shown, leading to convergence.

Consider (ii) aI < (1−d)aC . Suppose x ∈ (x̂, aC ]. We know G(x) = [ζ(x̂−x)+x̂, x̂].
Since aI < (1 − d)aC , G(x) ⊂ [(1 − d)aC , x̂] ⊂ [aI , x̂], and therefore, G2(x) = [x̂, (1 −
ζ2)x̂ + ζ2x]. Since ζ ∈ (0, 1) and x > x̂, we have (1− ζ2)x̂ + ζ2x < x. This implies that
limt→∞G

2t(x) = {x̂}. Since limx→x̂ ζ(x̂ − x) + x̂ = x̂, we must have limt→∞G
2t+1(x) =

{x̂}. This leads to the desired conclusion that x converges to x̂ for x ∈ (x̂, aC ]. Since
limt→∞G

t(x) = {x̂} for any x ∈ (x̂, aC ], limt→∞G
t(x) = {x̂} for any x ∈ G((x̂, aC ]) =

[(1−d)aC , x̂]. Further, since G([aC , x̂/(1−d))) = [(1−d)aC , x̂], the system must converge
for any x in [aC , x̂/(1−d)). Since we know that h(x) = {(1−d)x} for x in [x̂/(1−d),∞), for
any x in [x̂/(1−d),∞), after finite periods, the stock must enter the region ([x̂, x̂/(1−d)),
thus leading to convergence. So far we have shown that the system converges for any x in
[(1−d)aC ,∞). According to Proposition 1, for any x less than x̂, after finite periods, the
stock must be above x̂, again according to what we have shown, leading to convergence.

We now have shown for any x, the optimal policy leads to a convergence to the
golden rule stock.
Proof of Proposition 3:

Consider the subregion (0, aI ].
Suppose on the contrary there exists x ∈ (0, aI ] and z ∈ h(x) such that z 6= θx.

Then we must have z < θx. By the optimality of z,

V (x) = u(x, z) + ρV (z) ≥ u(x, θx) + ρV (θx).

Rearranging the equation, we have

u(x, z)−u(x, θx) ≥ ρ(V (θx)−V (z)) ≥ ρV ′−(θx)(θx− z) ≥ ρV ′−(x̂)(θx− z) ≥ ρp̂(θx− z),

where the second inequality follows from concavity of V , the third inequality follows from
concavity of V and the fact that θaI ≤ x̂ for ζ ≤ 0 (Lemma 5), and the last inequality
follows from Lemma 4 ii).

By the definition of u, and given that x ≤ aI , we have

u(x, z)− u(x, θx) = (1/aC)[x− (aI/b)(z − (1− d)x)] =
aI
baC

(θx− z) < p̂ρ(θx− z),
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where the last inequality follows from Lemma 2. Since we have shown that u(x, z) −
u(x, θx) ≥ ρp̂(θx− z). This leads to a contradiction and establishes the desired result.

Consider the subregion [aC ,∞).
Suppose on the contrary there exists x ≥ aC and z ∈ h(x) such that z 6= (1− d)x.

Then we must have z > (1− d)x. By the optimality of z,

V (x) = u(x, z) + ρV (z) ≥ u(x, (1− d)x) + ρV ((1− d)x).

Rearranging the equation, we have

u(x, (1− d)x)− u(x, z) ≤ ρ(V (z)− V ((1− d)x)) ≤ ρV ′+((1− d)x)(z − (1− d)x)

≤ ρV ′+(x̂)(z − (1− d)x) ≤ ρp̂(z − (1− d)x),

where the second inequality follows from concavity of V , the third inequality follows
from concavity of V and the fact that x̂ ≤ (1− d)aC ≤ (1− d)x (Lemma 5), and the last
inequality follows from Lemma 4 ii).

By the definition of u, and given that x ≥ aC , we have

u(x, (1− d)x)− u(x, z) = (z − (1− d)x)/b > p̂ρ(z − (1− d)x),

where the last inequality follows from Lemma 2. Since we have shown that u(x, (1 −
d)x)−u(x, z) ≤ ρp̂(z−(1−d)x). This leads to a contradiction and establishes the desired
result.

Consider the subregion (aI , x̂].
Suppose on the contrary there exists x ∈ (aI , x̂] and z ∈ h(x) such that z /∈

[ζ(x̂− x) + x̂, x̂]. There are two possible cases: (i) z > x̂; (ii) z < ζ(x̂− x) + x̂.
Consider (i) z > x̂. We have

V (x) = u(x, z) + ρV (z) ≥ u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, x̂)− u(x, z) ≤ ρ(V (z)− V (x̂)) ≤ ρV ′+(x̂)(z − x̂) ≤ ρp̂(z − x̂),

where the second inequality follows from concavity of V and the last inequality follows
from Lemma 4 ii).

By the definition of u, and given that x ∈ (aI , x̂] and ζ ≤ 0, we have

u(x, x̂)− u(x, z) ≥ (1/b)(z − x̂) > p̂ρ(z − x̂),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, x̂)−u(x, z) ≤ ρp̂(z−x̂). This leads to a contradiction

and establishes the desired result.
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Consider (ii) z < ζ(x̂− x) + x̂. We have

V (x) = u(x, z) + ρV (z) ≥ u(x, ζ(x̂− x) + x̂) + ρV (ζ(x̂− x) + x̂).

Rearranging the equation, we have

u(x, z)− u(x, ζ(x̂− x) + x̂) ≥ ρ(V (ζ(x̂− x) + x̂)− V (z))

≥ ρV ′−(ζ(x̂− x) + x̂)((ζ(x̂− x) + x̂)− z)

≥ ρV ′−(x̂)((ζ(x̂− x) + x̂)− z) ≥ ρp̂((ζ(x̂− x) + x̂)− z)

where the second inequality follows from concavity of V , the third inequality follows from
concavity of V and the fact that ζ(x̂− x) + x̂ ≤ x̂ for x ∈ (aI , x̂], and the last inequality
follows from Lemma 4 ii).

By the definition of u, and given that x ∈ (aI , x̂], we have

u(x, z)− u(x, ζ(x̂− x) + x̂) ≤ aI
aCb

((ζ(x̂− x) + x̂)− z) < p̂ρ((ζ(x̂− x) + x̂)− z),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, z)− u(x, (ζ(x̂− x) + x̂)) ≥ ρp̂((ζ(x̂− x) + x̂)− z).

This leads to a contradiction and establishes the desired result.
Last, consider the subregion (x̂, aC).
Suppose on the contrary there exists x ∈ (x̂, aC) and z ∈ h(x) such that z /∈

[x̂, ζ(x̂− x) + x̂]. There are two possible cases: (i) z < x̂; (ii) z > ζ(x̂− x) + x̂.
Consider (i) z < x̂. We have

V (x) = u(x, z) + ρV (z) ≥ u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, z)− u(x, x̂) ≥ ρ(V (x̂)− V (z)) ≥ ρV ′−(x̂)(x̂− z) ≥ ρp̂(x̂− z),

where the second inequality follows from concavity of V and the third inequality follows
from Lemma 4 ii).

By the definition of u, and given that x ∈ (x̂, aC) and ζ ≤ 0, we have

u(x, z)− u(x, x̂) ≤ aI
baC

(x̂− z) < p̂ρ(x̂− z),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, z)−u(x, x̂) ≥ ρp̂(x̂−z). This leads to a contradiction

and establishes the desired result.
Consider (ii) z > ζ(x̂− x) + x̂. We have

V (x) = u(x, z) + ρV (z) ≥ u(x, ζ(x̂− x) + x̂) + ρV (ζ(x̂− x) + x̂).
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Rearranging the equation, we have

u(x, ζ(x̂− x) + x̂)− u(x, z) ≤ ρ(V (z)− V (ζ(x̂− x) + x̂))

≤ ρV ′+(ζ(x̂− x) + x̂)(z − (ζ(x̂− x) + x̂))

≤ ρV ′+(x̂)(z − (ζ(x̂− x) + x̂)) ≤ ρp̂(z − (ζ(x̂− x) + x̂))

where the second inequality follows from concavity of V , the third inequality follows
from concavity of V and the fact that ζ(x̂ − x) + x̂ ≥ x̂ for x ∈ (x̂, aC), and the last
inequality follows from Lemma 4 ii).

By the definition of u, and given that x ∈ (x̂, aC) we have

u(x, ζ(x̂− x) + x̂)− u(x, z) ≥ (1/b)(z − (ζ(x̂− x) + x̂)) > p̂ρ(z − (ζ(x̂− x) + x̂)),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, (ζ(x̂− x) + x̂))− u(x, z) ≤ ρp̂(z − (ζ(x̂− x) + x̂)).

This leads to a contradiction and establishes the desired result.
Proof of Proposition 4:

It has been covered in Proposition 3 for x ∈ (0, aI ] ∪ [aC ,∞). We only need to
consider x ∈ (aI , aC). Suppose x is in (aI , x̂]. Since ζ > −1 and ζ ≤ 0, we have x <
ζ(x̂ − x) + x̂ ≤ x̂, which implies ζ(x̂ − x) + x̂ ∈ (aI , aC). Similarly, if x ∈ (x̂, aC), we
must have ζ(x̂ − x) + x̂ ∈ (aI , aC). This suggests that for any x ∈ (aI , aC), if we follow
the policy such that x′ = ζ(x̂ − x) + x̂, the stock of the next period is also in (aI , aC)
and therefore, the policy that fully utilizes resources for x ∈ (aI , aC) leads to zero total
value loss. Any deviation from this policy leads to a positive value loss for x ∈ (aI , aC),
and therefore, it is not optimal. Hence, according to Lemma 8, h(x) = {ζ(x̂ − x) + x̂}
for x ∈ (aI , aC).
Proof of Proposition 5:

Since ζ is in (0, 1], or more explicitly, b(aC − aI) − (1 − d) ≤ 1, rearranging the
terms, we must have (aC − θaI) + ((1− d)aC − aI) ≥ 0, which implies that at least one
of the following two inequalities holds: (A) aC ≥ θaI ; (B) (1− d)aC ≥ aI . Therefore, we
consider three possible cases.

(i) Both (A) and (B) hold: aC ≥ θaI and (1− d)aC ≥ aI .
This is the simplest case. Consider x ∈ [aI , aC ]. Since f(x) ≡ ζ(x̂ − x) − x̂) ∈

[aC(1−d), aIθ] ⊂ [aI , aC ], the sequence of the capital stock generated by f , {f t(x)}∞t=1, is
bounded by [aI , aC ]. Further, since we know from Lemma 1 that the value loss associated
with (x, f(x)) is zero for x ∈ [aI , aC ], the sum of the discounted value losses associated
with {f t(x)}∞t=1 is zero. Stating from x, any program that deviates from {f t(x)}∞t=1 yields
a positive value loss. According to Lemma 8, h(x) = {ζ(x̂− x)− x̂)} for x ∈ [aI , aC ].

Now consider x ∈ (x̂/θ, aI). According to Proposition 1, we know h(x) ⊂ [x̂, θx] ⊂
[x̂, θaI ] ⊂ [x̂, aC ]. Since we know that the total value loss for the optimal program starting
from x ∈ [aI , aC ] is always zero, we just need to check the one-period value loss for (x, x′)
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with x ∈ (x̂/θ, aI) and x′ ∈ [x̂, θx]:

δρ(x, x′) = u(x̂, x̂) + (ρ− 1)p̂x̂− u(x, x′)− p̂(ρx′ − x)

= u(x̂, x̂) + (ρ− 1)p̂x̂− (1/aC)(x− (aI/b)(x
′ − (1− d)x))− p̂(ρx′ − x).

Then we have
∂δρ(x, x′)

∂x′
=

aI
aCb
− p̂ρ < 0,

where the inequality follows from Lemma 2. Since the one-period value loss strictly
decreases with x′, it attains its unique minimum and therefore the total value loss attains
its unique minimum, when x′ attains its unique maximum, which implies that h(x) =
{θx} for x ∈ (x̂/θ, aI).

Consider x ∈ (aC , x̂/(1 − d)). According to Proposition 1, we know h(x) ⊂ [(1 −
d)x, x̂] ⊂ [(1− d)aC , x̂] ⊂ [aI , x̂]. Since we know that the total value loss for the optimal
program starting from x ∈ [aI , aC ] is always zero, we just need to check the one-period
value loss for (x, x′) with x ∈ (aC , x̂/(1− d)) and x′ ∈ [(1− d)x, x̂] :

δρ(x, x′) = u(x̂, x̂) + (ρ− 1)p̂x̂− (1− (1/b)(x′ − (1− d)x))− p̂(ρx′ − x).

Then we have
∂δρ(x, x′)

∂x′
=

1

b
− p̂ρ > 0,

where the inequality follows from Lemma 2. Since the one-period value loss strictly
increases with x′, it attains its unique minimum and therefore the total value loss attains
its unique minimum, when x′ attains its unique minimum, which implies h(x) = {(1 −
d)x} for x ∈ (aC , x̂/(1− d)).

Combined with the characterization for x ∈ (0, x̂/θ] ∪ [x̂/(1− d),∞) as in Propo-
sition 1, we have obtained the desired result for case (i).

(ii) Only (B) holds: aC < θaI and (1− d)aC ≥ aI .
The complication arises from the fact that aC < aIθ. As aC < aIθ, f(aI) =

ζ(x̂ − aI) + x̂ = aIθ > aC , which means, f(aI) /∈ [aI , aC ]. The total value loss could be
strictly positive even if we follow the policy f with an initial stock starting from aI .

Consider x ∈ [x̂, aC ]. Since aC(1− d) ≥ aI , f(x) = ζ(x̂− x) + x̂ ∈ [(1− d)aC , x̂] ⊂
[aI , x̂]. Since f(x) ∈ [aI , x̂], f 2(x) = ζ2x + (1− ζ2)x̂ ∈ [x̂, x] ⊂ [x̂, aC ], where ζ2x + (1−
ζ2)x̂ ≤ x follows from ζ ∈ (0, 1] and x ≥ x̂. Therefore, {f t(x)}∞t=1, is bounded by [aI , aC ].
It follows from the argument for case (i) that h(x) = {ζ(x̂− x) + x̂} for x ∈ [x̂, aC ].

Consider x ∈ [aC(ζ − d)/ζ, x̂). Since aC < aIθ, aC(ζ − d)/ζ > aI . Since f(x) ∈
(x̂, aC ] with δρ(x, f(x)) = 0 and we have shown that the optimal policy function leads
to the total value loss being zero for any initial stock in (x̂, aC ], we must have h(x) =
{ζ(x̂− x) + x̂} for x ∈ [aC(ζ − d)/ζ, x̂).

Consider x ∈ (aC , x̂/(1 − d)). According to Proposition 1, we know h(x) ⊂ [(1 −
d)x, x̂] ⊂ [(1− d)aC , x̂] ⊂ [aC(ζ − d)/ζ, x̂], where [(1− d)aC , x̂] ⊂ [aC(ζ − d)/ζ, x̂] follows
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from ζ ∈ (0, 1]. Then it follows from the argument for case (i) that h(x) = {(1 − d)x}
for x ∈ (aC , x̂/(1− d)).

Consider x ∈ (x̂/θ, aC/θ]. Since aC < aIθ, aC/θ < aI . According to Proposition 1,
we know h(x) ⊂ [x̂, θx] ⊂ [x̂, aC ]. Again, it follows from the argument for case (i) that
h(x) = {θx} for x ∈ (x̂/θ, aC/θ].

Last, consider x ∈ (aC/θ, aC(ζ − d)/ζ).According to Proposition 1, h(x) ⊂
[x̂,min{θx, ζ(x̂ − x) + x̂}]. Since x is in (aC/θ, aC(ζ − d)/ζ), we have [x̂, aC ] ⊂
[x̂,min{θx, ζ(x̂ − x) + x̂}]. Let x′ ∈ [x̂,min{θx, ζ(x̂ − x) + x̂}]. If x′ ≤ aC , then the
total value loss is simply the one period value loss δρ(x, x′). Following the argument for
case (i), the one period value loss is minimized when x′ attains its maximum, aC . Hence,
we must have h(x) ⊂ [aC ,min{θx, ζ(x̂− x) + x̂}].

Combined with the characterization for x ∈ (0, x̂/θ]∪ [x̂/(1−d),∞) in Proposition
1, we have obtained the desired result for case (ii).

(iii) Only (A) holds: aC ≥ θaI and (1− d)aC < aI .
The complication for this case arises from the fact that aC(1− d) < aI . As aC(1−

d) < aI , f(aC) = ζ(x̂ − aC) + x̂ = (1 − d)aC < aI , which means f(aC) /∈ [aI , aC ]. The
total value loss could be strictly positive even if we follow the policy f with an initial
stock starting from aC .

Consider x ∈ [aI , x̂]. Since aC ≥ aIθ, it follows symmetrically from the argument
for [x̂, aC ] in case (ii) that h(x) = {ζ(x̂− x) + x̂} for x ∈ [aI , x̂].

Consider x ∈ (x̂, aC(1+(1−d)/ζ)−aI/ζ]. Since aC(1−d) < aI , aC(1+(1−d)/ζ)−
aI/ζ < aC . Then it follows symmetrically from the argument for [aC(ζ − d)/ζ, x̂) in case
(ii) that h(x) = {ζ(x̂− x) + x̂} for x ∈ (x̂, aC(1 + (1− d)/ζ)− aI/ζ].

Consider x ∈ (x̂/θ, aI). According to Proposition 1, h(x) ⊂ [x̂, θx] ⊂ [x̂, θaI ] ⊂
[x̂, aC(1+(1−d)/ζ)−aI/ζ], where the last ⊂ holds because θaI ≤ aC(1+(1−d)/ζ)−aI/ζ,
which itself follows from f(θaI) ≥ aI (due to ζ ≤ 1), f(aC(1 + (1− d)/ζ)− aI/ζ) = aI ,
and f being decreasing. Then it follows from the argument for case (i) that h(x) = {θx}
for x ∈ (x̂/θ, aI).

Consider x ∈ (aI/(1 − d), x̂/(1 − d)). Since aC(1 − d) < aI , aI/(1 − d) > aC .
According to Proposition 1, h(x) ⊂ [(1 − d)x, x̂] ⊂ [aI , x̂]. It then follows from the
argument for case (i) that h(x) = {(1− d)x} for x ∈ (aI/(1− d), x̂/(1− d)).

Last, consider x ∈ (aC(1+(1−d)/ζ)−aI/ζ, aI/(1−d)). According to Proposition 1,
h(x) ⊂ [max{(1−d)x, ζ(x̂−x)+ x̂}, x̂]. Since x is in (aC(1+(1−d)/ζ)−aI/ζ, aI/(1−d)),
we have [aI , x̂] ⊂ [max{(1 − d)x, ζ(x̂ − x) + x̂}, x̂]. If x′ ≥ aI , then total value loss is
simply the one period value loss. Following the argument for case (i), the one period
value loss is minimized when x′ attains its minimum, aI . Then we must have h(x) ⊂
[max{(1− d)x, ζ(x̂− x) + x̂}, aI ].

Combined with the characterization for x ∈ (0, x̂/θ]∪ [x̂/(1−d),∞) in Proposition
1, we have obtained the desired result for case (iii).
Proof of Proposition 2:

We first show the first part of the proposition concerning the definition and the
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order of ρ̄t. Let ft(ρ) ≡ aCb(1 − d)tρt+1 − (aC − aI)aIζρ − aI(aC − aI). Since ft(0) < 0
and ft(ρ) > 0 for ρ sufficiently large, there must exist at least one positive root to the
equation ft(ρ) = 0. Suppose there are two different roots, denoted by ρ1 and ρ2. Without
loss of generality, let ρ1 > ρ2. Then we have

aCb(1− d)tρt+1
1 − (aC − aI)aIζρ1 − aI(aC − aI) = 0

aCb(1− d)tρt+1
2 − (aC − aI)aIζρ2 − aI(aC − aI) = 0,

which implies

aCb(1− d)t(ρt+1
1 − ρt+1

2 ) = (aC − aI)aIζ(ρ1 − ρ2)

⇔ (aC − aI)aIζ =
aCb(1− d)t(ρt+1

1 − ρt+1
2 )

ρ1 − ρ2

> aCb(1− d)tρt2,

where the last equality follows from ρ1 > ρ2. Since (aC−aI)aIζ > aCb(1−d)tρt2, aCb(1−
d)tρt+1

2 − (aC − aI)aIζρ2− aI(aC − aI) < 0, leading to the contradiction. Hence, ρ̄t is the
unique positive root, being well-defined. Further, since f1(1/θ) = baC(1− d− θ)/θ2 < 0
and we know f1(ρ) is positive for ρ sufficiently large, ρ̄1 > 1/θ. Since ft(1/(1 − d)) =
b(aC − aI)/(1− d) > 0 and we know ft(0) < 0, ρ̄t < 1/(1− d) for any t.

By definition, we have

ft+1(ρ̄t+1) = 0⇔ aCb(1− d)t+1ρ̄t+2
t+1 − (aC − aI)aIζρ̄t+1 − aI(aC − aI) = 0

ft(ρ̄t) = 0⇔ aCb(1− d)tρ̄t+1
t − (aC − aI)aIζρ̄t − aI(aC − aI) = 0.

Since ρ̄t+1 < 1/(1− d), or equivalently, ρ̄t+1(1− d) < 1,

ft+1(ρ̄t) = aCb(1− d)t+1ρ̄t+2
t − (aC − aI)aIζρ̄t − (aC − aI)aI < ft(ρ̄t) = 0.

Further, we know ft(ρ) > 0 for ρ sufficiently large, so ρ̄t+1 > ρ̄t.
Now we turn to characterizing the optimal policy correspondence for x ∈

(aC/θ, aC(ζ − d)/ζ).
Pick the smallest integer t0 such that aIθ(1 − d)t0 < aC . By construction, t0 ≥ 1

and aIθ(1 − d)t0−1 ≥ aC , so aIθ(1 − d)t0 ≥ (1 − d)aC ≥ aC(ζ − d)/ζ, where the last
inequality follows from 0 < ζ ≤ 1.

Pick x ∈ (aC/θ, aC(ζ−d)/ζ). According to case (ii) in Proposition 5, the stock for
the next period, x′, has to be in [aC ,min{ζ(x̂−x)+x̂, θx}], so x′ ≤ aIθ. Pick the smallest
integer t1 such that (1 − d)t1x′ < aC . Since x′ ≤ aIθ, by construction, 1 ≤ t1 ≤ t0 and
(1− d)t1−1x′ ≥ aC , so (1− d)t1x′ ≥ (1− d)aC ≥ aC(ζ − d)/ζ.

For any stock above aC , notice that the optimality mandates the stock in the
following period to shirk by (1− d) times. Following x′, the stock for the next t1 periods
are given by {(1 − d)tx′}t1t=1. Since (1 − d)t1x′ ⊂ [aC(ζ − d)/ζ, aC), after t1 + 1 periods,
the total value loss of the remaining periods will be zero, so we focus on the total value
loss for the first t1 + 1 periods.
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Consider the (t1 + 1)-period value loss associated with (x, x′) and {((1−d)tx′, (1−
d)t+1x′)}t=t1−1

t=0 .

`t1(x
′) ≡ δρ(x, x′) +

t1−1∑
t=0

ρt+1δρ((1− d)tx′, (1− d)t+1x′)

=
1− ρt1
1− ρ

u(x̂, x̂) + (ρt1 − 1)p̂x̂− (1/aC)(x− (aI/b)(x
′ − (1− d)x))

−ρ− ρ
t1+1

1− ρ
− p̂(ρt1+1(1− d)t1x′ − x)

Then we have

∂`t1(x
′)

∂x′
=

aI
baC
− p̂ρt1+1(1− d)t1 =

aI
baC
− ρt1+1(1− d)t1

(aC − aI)(1 + ρζ)
=

−ft1(ρ)

baC(aC − aI)(1 + ρζ)
.

By construction of ρ̄t1 , we know ∂`t1(x
′)/∂x′ > 0 if ρ < ρ̄t1 ; ∂`t1(x

′)/∂x′ = 0 if
ρ = ρ̄t1 ; ∂`t1(x

′)/∂x′ < 0 if ρ > ρ̄t1 .
Consider two possible cases: (1) t0 = 1; (2) t0 > 1.
For (1), t0 = 1, so we must have t1 = 1. Hence, we only need to consider the

two-period value loss. If ρ > ρ̄1, the total value loss attains its minimum when x′ attains
its maximum, suggesting that h(x) = min{ζ(x̂ − x) + x̂, θx}. If ρ = ρ̄1, then the total
value loss is constant with respect to x′, so h(x) = [aC ,min{ζ(x̂−x) + x̂, θx}]. If ρ < ρ̄1,
the total value loss attains its minimum when x′ attains its minimum, which implies that
h(x) = {aC}.

For (2), (1/θ,∞) is partitioned by {ρ̄t}t0t=1 : (1/θ, ρ̄1), {ρ̄1}, (ρ̄1, ρ̄2),..., (ρ̄t0−1, ρ̄t0),
{ρ̄t0}, and (ρ̄t0 ,∞).

Consider ρ < ρ̄1. The two-period value loss is minimized and total value loss is
equal to the two-period value loss when x′ = aC , so h(x) = {aC}.

Consider ρ = ρ̄t1 for t1 taking value from {1, 2, ..., t0}. The (t1 + 1)-period value
loss and also the total value loss is constant with respect to x′ for a fixed t1. Since
ρ = ρ̄t1 , ρ > ρ̄t′1 for any t′1 < t1 and ρ < ρ̄t′1 for any t′1 > t1. Since ρ > ρ̄t′1 for
any t′1 < t1, the total value loss decreases with x′ for t′1 < t1, or equivalently, for
x′(1 − d)t1−1 < aC .27 Since ρ < ρ̄t′1 for any t′1 > t1, the total value loss increases
with x′ for t′1 > t1, or equivalently, for x′(1 − d)t1 ≥ aC . If min{ζ(x̂ − x) + x̂, θx} >
aC/(1 − d)t1 , then h(x) = [aC/(1 − d)t1−1, aC/(1 − d)t1 ]. If min{ζ(x̂ − x) + x̂, θx} ∈
[aC/(1 − d)t1−1, aC/(1 − d)t1 ], then h(x) = [aC/(1 − d)t1−1,min{ζ(x̂ − x) + x̂, θx}]. If
min{ζ(x̂ − x) + x̂, θx} < aC/(1 − d)t1 , then h(x) = min{ζ(x̂ − x) + x̂, θx}. In sum, for
ρ = ρ̄t1 , h(x) = [min{ζ(x̂−x) + x̂, θx, aC/(1−d)t−1},min{ζ(x̂−x) + x̂, θx, aC/(1−d)t}].

Consider ρ ∈ (ρ̄t1 , ρ̄t1+1) for t1 taking value from {1, ..., t0 − 1}. The (t1 + 1)-
period value loss and also the total value loss is minimized when x′ attains its maximum

27Here we implicitly rely on the continuity of the value function.
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for a fixed t1. Since ρ < ρ̄t1+1, ρ < ρ̄t′1 for any t′1 > t1, which implies that the total
value loss increases with x′ for t′1 > t1, or equivalently, for x′(1 − d)t1 ≥ aC . Since
ρ > ρ̄t1 , ρ > ρ̄t′1 for any t′1 < t1, which implies that the total value loss decreases
with x′ for t′1 < t1, or equivalently, for x′(1 − d)t1−1 < aC . Hence, we have h(x) =
min{ζ(x̂− x) + x̂, θx, aC/(1− d)t1}.

Last, consider ρ > ρ̄t0 . Since we know ρ̄t0 ≥ ρ̄t for any t = 1, 2, ..., t0, ρ > ρ̄t1 for
any t1. This suggests that the (t1 + 1)-period value loss and also the total value loss
decreases with x′ for any given t1. Then the total value loss is minimized when x′ attains
its maximum. Hence, h(x) = min{ζ(x̂− x) + x̂, θx}.

We have now obtained the desired conclusion.
Proof of Proposition 3:

We first show the first part of the proposition concerning the definition and the
order of ρ̃t. Let ft(ρ) ≡ bθtρt+1−(aC−aI)ζρ−(aC−aI). Since ft(0) < 0 and ft(ρ) > 0 for
ρ sufficiently large, there must exist at least one positive root to the equation ft(ρ) = 0.
Suppose there are two different roots, denoted by ρ1 and ρ2. Without loss of generality,
let ρ1 > ρ2. Then we have

bθtρt+1
1 − (aC − aI)ζρ1 − (aC − aI) = 0

bθtρt+1
2 − (aC − aI)ζρ2 − (aC − aI) = 0,

which implies

bθt(ρt+1
1 − ρt+1

2 ) = (aC − aI)ζ(ρ1 − ρ2)⇔ (aC − aI)ζ =
bθt(ρt+1

1 − ρt+1
2 )

ρ1 − ρ2

> bθtρt2,

where the last equality follows from ρ1 > ρ2. Since (aC − aI)ζ > bθtρt2, bθtρt+1
2 − (aC −

aI)ζρ2 − (aC − aI) < 0, leading to the contradiction. Hence, ρ̃t is the unique positive
root, being well-defined. Further, since ft(1/θ) = −b(aC − aI)/(aIθ) < 0 and we know
ft(ρ) is positive for ρ sufficiently large, ρ̃t > 1/θ.

By definition, we have

ft+1(ρ̃t+1) = 0⇔ bθt+1ρ̃t+2
t+1 − (aC − aI)ζρ̃t+1 − (aC − aI) = 0

ft(ρ̃t) = 0⇔ bθtρ̃t+1
t − (aC − aI)ζρ̃t − (aC − aI) = 0.

Since ρ̃t+1 > 1/θ, or equivalently, ρ̃t+1θ > 1,

ft(ρ̃t+1) = bθtρ̃t+1
t+1 − (aC − aI)ζρ̃t+1 − (aC − aI) < ft+1(ρ̃t+1) = 0.

Further, we know ft(ρ) > 0 for ρ sufficiently large, so ρ̃t+1 < ρ̃t.
Now we turn to characterizing the optimal policy correspondence for x ∈ (aC(1 +

(1− d)/ζ)− aI/ζ, aI/(1− d)).
Pick the smallest integer t0 such that θt0aC(1 − d) > aI . By construction, t0 ≥ 1

and θt0−1aC(1 − d) ≤ aI , so θt0aC(1 − d) ≤ θaI ≤ aC(1 + (1 − d)/ζ) − aI/ζ, where the
last inequality follows from ζ ≤ 1 and aIθ ≤ aC (also see the proof for Proposition 5).
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Pick x ∈ (aC(1+(1−d)/ζ)−aI/ζ, aI/(1−d)). According to case (iii) in Proposition
5, the stock for the next period, x′, has to be in [max{ζ(x̂ − x) + x̂, (1 − d)x}, aI ], so
x′ ≥ aC(1− d). Pick the smallest integer t1 such that θt1x′ > aI . Since x′ ≥ aC(1− d),
by construction, 1 ≤ t1 ≤ t0 and θt1−1aC(1 − d) ≤ aI , so θt1aC(1 − d) ≤ θaI ≤ aC(1 +
(1−d)/ζ)−aI/ζ. For any stock below aI , notice that the optimality mandates the stock
in the following period to grow up by θ times. Following x′, the stock for the next t1
periods are given by {θtx′}t1t=1. Since θt1x′ ⊂ (aI , aC(1 + (1 − d)/ζ) − aI/ζ], after t1 + 1
periods, the total value loss of the remaining periods will be zero, so we focus on the
total value loss for the first t1 + 1 periods.

Consider the (t1 + 1)-period value loss associated with (x, x′) and
{(θtx′, θt+1x′)}t=t1−1

t=0 .

`t1(x
′) ≡ δρ(x, x′) +

t1−1∑
t=0

ρt+1δρ(θtx′, θt+1x′)

=
1− ρt1
1− ρ

u(x̂, x̂) + (ρt1 − 1)p̂x̂− (1− (1/b)(x′ − (1− d)x))− p̂(ρt1+1θt1x′ − x)

Then we have

∂`t1(x
′)

∂x′
=

1

b
− p̂ρt1+1θt1 =

1

b
− ρt1+1θt1

(aC − aI)(1 + ρζ)
=

−ft1(ρ)

b(aC − aI)(1 + ρζ)
.

By construction of ρ̃t1 , we know ∂`t1(x
′)/∂x′ > 0 if ρ < ρ̃t1 ; ∂`t1(x

′)/∂x′ = 0 if
ρ = ρ̃t1 ; ∂`t1(x

′)/∂x′ < 0 if ρ > ρ̃t1 .
Consider two possible cases: (1) t0 = 1; (2) t0 > 1.
For (1), t0 = 1, so t1 = 1. Hence, we only need to consider the two-period value

loss. If ρ < ρ̃1, the total value loss attains its minimum when x′ attains its minimum,
suggesting that h(x) = max{ζ(x̂− x) + x̂, (1− d)x}. If ρ = ρ̃1, then the total value loss
is constant with respect to x′, so h(x) = [max{ζ(x̂− x) + x̂, (1− d)x}, aI ]. If ρ > ρ̃1, the
total value loss attains its minimum when x′ attains its maximum, which implies that
h(x) = {aI}.

For (2), (1/θ,∞) is partitioned by {ρ̃t}t0t=1 : (1/θ, ρ̃t0), {ρ̃t0}, (ρ̃t0 , ρ̃t0−1),..., (ρ̃2, ρ̃1),
{ρ̃1}, and (ρ̃1,∞).

Consider ρ > ρ̃1. The two-period value loss is minimized and total value loss is
equal to the two-period value loss when x′ = aI , so h(x) = {aI}.

Consider ρ = ρ̃t1 for t1 taking value from {1, 2, ..., t0}. The (t1 + 1)-period value
loss and also the total value loss is constant with respect to x′ for a fixed t1. Since
ρ = ρ̃t1 , ρ > ρ̃t′1 for any t′1 > t1 and ρ < ρ̃t′1 for any t′1 < t1. Since ρ > ρ̃t′1 for
any t′1 > t1, the total value loss decreases with x′ for t′1 > t1, or equivalently, for
x′θt1 ≤ aI .

28 Since ρ < ρ̃t′1 for any t′1 < t1, the total value loss increases with x′ for

28Here we implicitly rely on the continuity of the value function.

34



t′1 < t1, or equivalently, for x′θt1−1 > aI . If max{ζ(x̂ − x) + x̂, (1 − d)x} < aI/θ
t1 ,

then h(x) = [aI/θ
t1 , aI/θ

t1−1]. If max{ζ(x̂ − x) + x̂, (1 − d)x} ∈ [aI/θ
t1 , aI/θ

t1−1], then
h(x) = [max{ζ(x̂−x) + x̂, (1−d)x}, aI/θt1−1]. If max{ζ(x̂−x) + x̂, (1−d)x} > aI/θ

t1−1,
then h(x) = max{ζ(x̂− x) + x̂, (1− d)x}. In sum, for ρ = ρ̃t1 , h(x) = [max{ζ(x̂− x) +
x̂, (1− d)x, aI/θ

t1},max{ζ(x̂− x) + x̂, (1− d)x, aI/θ
t1−1}].

Consider ρ ∈ (ρ̃t1+1, ρ̃t1) for t1 taking value from {1, ..., t0− 1}. The (t1 + 1)-period
value loss and also the total value loss is minimized when x′ attains its minimum for
a fixed t1. Since ρ > ρ̃t1+1, ρ > ρ̃t′1 for any t′1 > t1, which implies that the total value
loss decreases with x′ for t′1 > t1, or equivalently, for x′θt1 ≤ aI . Since ρ < ρ̃t1 , ρ < ρ̃t′1
for any t′1 < t1, which implies that the total value loss increases with x′ for t′1 < t1, or
equivalently, for x′θt1−1 > aI . Hence, we have h(x) = max{ζ(x̂−x)+ x̂, (1−d)x, aI/θ

t1}.
Last, consider ρ < ρ̃t0 . Since we know ρ̃t0 ≤ ρ̃t for any t = 1, 2, ..., t0, ρ < ρ̃t1 for

any t1. This suggests that the (t1 + 1)-period value loss and also the total value loss
increases with x′ for any given t1. Then the total value loss is minimized when x′ attains
its minimum. Hence, h(x) = max{ζ(x̂− x) + x̂, (1− d)x}.

We have now obtained the desired conclusion.
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Figure 1: The Production Possibility Frontier
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Figure 8: Illustration of Proposition 2

47



Figure 9: Illustration of Proposition 3
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Table 1: Parameter Comparison with the Antecedent Literature

Model Consumption Goods Investment Goods Depreciation Rate Marginal Transformation of Capital
Labor Capital Labor Capital

RSL 1 aC 1/b aI/b d ∈ (0, 1) ζ = b/(aC − aI)− (1− d)

RSS 1 1 a 0 d ∈ (0, 1) ξ = 1/a− (1− d)

Nishimura-Yano α 1 β/µ 1/µ d = 1 αµ/(β − α)

Benhabib-Nishimura a00 a10 a01 a11 g ∈ (0, 1) −[a01(a11/a01 − a10/a00)]−1 − (1− g)

Lancaster a22 a21 a12 a11

Worswick I 1/c 1/(cn) m 0 d ∈ (0, 1)

Worswick II 1/c 1/(cn) 1/h 1/(hl) d ∈ (0, 1)

Notes: (1) Benhabib-Nishimura works with a general production function and all the coefficients are those at the

steady state; (2) Both Lancaster and Worswick analyze descriptive growth models with a given saving function.
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