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Abstract
We provide a complete characterization of optimal extinction in a two-sector model of
economic growth through three results, surprising in both their simplicity and intricacy.
(i) When the discount factor is below a threshold identified by the well-known δ-
normality condition for the existence of a stationary optimal stock, the economy’s
capital becomes extinct in the long run. (ii) This extinction may be staggered if and
only if the investment-good sector is capital-intensive. (iii) We uncover a sequence
of thresholds of the discount factor, identified by a family of rational functions, that
represent bifurcations for optimal postponements on the path to extinction. We also
report various special cases of the model having to do with unsustainable technologies
and equal capital-intensities that showcase long-term optimal growth, all of topical
interest and all neglected in the antecedent literature.
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A formal presentation demands a precision in thinking and encourages a search
for the most direct route from a set of assumptions to a conclusion. Despite
its stark simplicity, a model may dramatically confirm or reject an “intuitive”
perception, andmay display highly complex, essentially unpredictable evolution,
allowing for possibilities of extinction and indefinite sustainability. Even small
changes may set the stage for inevitable rather than possible extinction and
emergence of “thresholds” or “tipping points” that mark a change from growth
to a stunning inevitability of extinction.1 Majumdar (2020)

1 Introduction

The notion of a stationary capital stock, also referred to as a stationary optimal pro-
gram, is central to the theory of aggregative and multi-sectoral descriptive and optimal
growth, as it stems from the pioneering papers of Ramsey (1928) and von Neumann
(1945).2 Adopting a primal approach, Khan and Mitra (1986) obtain a sufficient con-
dition concerning the discount factor and the technology, namely the δ-normality

1 This epigraph is cobbled from several sentences: for the first two, see p. vii from the preface, and the third
from pp. 25–26, all from Majumdar (2020). Section 5.4 is directly relevant to this paper. More generally,
this book addresses topical issues of the day, and merits a careful study.
2 It is now well understood that Ramsey’s 1928 effort was rediscovered by Cass (1965) and Koopmans
(1965), but theRCK label, common for theworkhorsemodel ofmodernmacroeconomics, does not acknowl-
edge either Samuelson (1965) and its earlier multi-sectoral extension by Samuelson and Solow (1956), or
the independent analysis of Malinvaud (1965); see Shell (1967) for elaborations in continuous time and the
use of Pontryagin’s principle; also see Spear and Young (2014, 2015) for details. Samuelson and Solow
(1956) concern themselves with multi-sectoral optimal growth theory, but closely followRamsey, while von
Neumann’s contribution sits astride descriptive and optimum growth theory in that it involves maximization
but not that of a Ramseyian planner. The notion of a blanced growth rate is, to be sure, directly connected
to that of a stationary capital stock; see Koopmans (1964) and Burmeister (1974).
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condition, for the existence of a unique non-trivial stationary optimal stock for a large
class of multi-sectoral optimal growth models.3 The literature has since largely pre-
sumed the existence of a non-trivial stationary optimal stock by explicitly or implicitly
imposing this δ-normality condition. Little of the existing work investigates the non-
fulfilment of the condition and its resulting implications. This paper takes up this open
question not merely to close a theoretical lacuna, important though that is, but also to
study the possibilities regarding issues of survival and optimal extinction of the capital
stock that are opened up by the non-fulfilment of this condition.4

The question is best investigated in a model in which the existence of an optimal
program is assured, but so is the non-existence of a non-trivial stationary capital
stock; a model tractable enough for the question at hand, yet with findings whose
robustness is not called into question in a fuller multi-sectoral setting. The canonical
two-sector Robinson-Srinivasan-Leontief (RSL) model of optimal growth fits this
need well,5 and the results it furnishes are surprising both for their simplicity and their
complication. This model consists of a consumption-good and an investment-good
sector, and with Leontief production technologies in both sectors. The (Ramseyian)
social planner maximizes the discounted sum of future utilities by allocating capital
and labor between the two sectors.

Under the aforementioned δ-normality condition, more specifically, when the dis-
count factor is above the inverse of themarginal rate of transformation (MRT)under full
specialization in the investment-good sector, (δ > 1/θ), thismodel has been employed
as aworkhorse to demonstrate how awide array of dynamics,6 ranging frommonotone
convergence to cycles and chaos, arises from a simple economic model. The question
then is what happens when the δ-normality condition is not fulfilled? And as befits any
analysis of a two-sector model, we ask this question under different capital intensity
conditions, a “casual property of the technology” being given prominence in Solow’s
rather immediate response to Uzawa’s contribution:

My second objective is to try to elucidate the role of the crucial capital-intensity
condition in Uzawa’s model. He finds that his model economy is always stable
if the consumption-goods sector is more capital-intensive than the investment-
goods sector. It seems paradoxical to me that such an important characteristic of
the equilibrium path should depend on such a casual property of the technology.
And since this stability property is the one respect in whichUzawa’s results seem

3 The state of the art result is in Section 7.5 of McKenzie (2002) where the author refers to McKenzie
(1986) and to the work of Peleg-Ryder. In his Handbook survey, he cites the work of Flynn, Khan-Mitra
and Sutherland; the relevant result is Theorem 7.1 which uses Lemma 7.1 ascribed to the 1984 working
paper version of Khan and Mitra (1986); see the overview in the Handbook chapter of Mitra and Nishimura
(2006).
4 For the topicality, not to say immediacy of these issues, see, in addition to Majumdar (2020), Managi
(2015), and their references. The latter is ostensibly phrased in the Asian context, yet testifies to the fact
that the very nature of the problem spills beyond national boundaries; see for example the chapter on
environment and growth by Horii and Ikefuji (2015).
5 The RSL model can be viewed as a special case of Morishima’s matchbox two-sector model. Morishima
(1969) first introduces and analyzes a “Walras-type model of matchbox size”, featuring Leontief production
technologies in a two-sector setting. Lectures in Morishima (1965) are the natural precursor to the book.
6 See the related literature on the two-sector growth theory documented below.
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qualitatively different from those of my 1956 paper on a one-sector model, I am
anxious to track down the source of the difference.7

We are anxious to see what happens to issues of survival and optimal extinction when
there is no non-trivial stationary optimal stock and a fortiori, any convergence to it is
precluded at the very outset.

In broad outline, the dispensation of the δ-normality condition in the RSL model
furnishes three results. First, capital stock always converges to zero in the long run
when the discount factor is below 1/θ . For a less productive investment-good sector,
this threshold (1/θ) can be close to unity and thus extinction may take place even for
relatively patient agents. Second, the deferment of extinction with positive investment
arises only if the investment-good sector is more capital intensive; if less intensive, the
economy fully specializes in the consumption-good sector on the path to extinction.
This asymmetry stems from the fact that production of consumption goods requires
relatively less capital when the investment-good sector is more capital intensive, and
it is then optimal to trade off today’s utility by diverting resources to investment
for tomorrow’s consumption gains. Third, perhaps most intriguingly, for the case of a
capital-intensive investment-good sector, we identify an infinite sequence of thresholds
for the discount factor at which the optimal policy bifurcates. As the discount factor
rises, the economy will stay longer in the phase of diversification, with production
resources fully utilized in consumption- and investment-good production, thus leading
to a longer delay in extinction.

We further extend the characterization of optimal policy to three special cases. First,
in the case of an unsustainable RSL technology (θ < 1), that is, any positive capital
stock being technologically unsustainable in the long run, the planner may still allo-
cate resources to the investment-good sector along the optimal path to extinction when
the investment-good sector is capital intensive. Second, when there is no difference in
capital intensities, and the model reduces to the one-sector case, the optimal dynamics
mirror the case of a capital-intensive consumption-good sector, bringing about extinc-
tion without investment.8 Third, in the knife-edge case for the discount factor in which
the optimal policy is no longer unique, and the optimal policy manifests itself as a
correspondence, the door is opened to a variety of long-term outcomes.

Our results contribute directly to the two-sector optimal growth theory. Benhabib
(1992) and Majumdar et al. (2000) still remain current as the go-to anthologies, and
can be complemented by chapters in Dana et al. (2006): they emphasize the existence
of cycles and chaos even when intertemporal arbitrage opportunities are precluded
by the assumption of an infinitely-lived Ramseyian planner.9 More specifically, the
two-sector RSL model that this paper examines has been used as a workhorse in this

7 See Solow (1961). Solow specifies the notion of stability that is subscribing to: “[The model economy is
stable] in the sense that full employment requires an approach to a state of balanced expansion.”
8 If the felicity function is instead assumed to be strictly concave, delayed extinction with investment can
also arise in the one-sector setting. Our main characterization results demonstrate investment along the
extinction path even without such strict concavity in a two-sector setting. We thank our referee for this
observation and will elaborate on it in Section 5.3.
9 Cycles and complicated dynamics are also known to arise from the overlapping generations (OLG)model
(Benhabib and Day 1982; Grandmont 1985). For the dynamics of two-sector OLGmodels, see Galor (1992)
and Reichlin (1992); also see Hirano and Stiglitz (2022).
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literature. In a seminal paper, Nishimura and Yano (1995) demonstrate in the RSL
model with circulating capital that optimal ergodic chaos can arise even for arbitrarily
patient agents. In another special case of the RSL model, the so-called Robinson-
Solow-Srinivasan (RSS) model, Khan and Mitra (2005) demonstrate the emergence
of optimal topological chaos.10 The upshot of the existing work is that under the δ-
normality condition, the optimal policy for the RSL model is rich and complex for
the case of a capital-intensive consumption-good sector and simple and uniform for
the case of a capital-intensive investment-good sector (Fujio et al. 2021). This paper
demonstrates that it is this dichotomy that is reversed under the non-fulfilment of the
δ-normality condition.

From a substantive point of view, this paper complements the discussions geared
more towards resource economics as pioneered by Clark (1976). Cropper et al. (1979)
andCropper (1988) establish conditions for optimal extinction of renewable resources.
Since the issues of survival and extinction relate to the future and future-uncertainty,
they demand one to move on from the deterministic framework of optimal growth
to a stochastic setting. Mitra and Roy (2006) study optimal management of natural
resources under uncertainty and characterize conditions that yield extinction. Also in a
stochastic one-sector growth setting, Kamihigashi (2006) offers sufficient conditions
for almost sure convergence to zero stock and connect the conditions with an intuitive
notion of volatility.11

The rest of the paper is structured as follows. We introduce the model and prelimi-
naries in the next section. InSect. 3,wepresent the results onoptimal extinctionwithout
investment. In Sect. 4, we explain the construction of thresholds for the discount factor,
which are then used as bifurcation values in our characterization of optimal extinction
with investment. Several special cases, including a numerical example, are discussed
in Sect. 5. In keeping with the epigraph, the proofs of the results require scrupulously
detailed derivation, but we make do with geometry alone.12 We conclude in Sect. 6.

2 Themodel and preliminaries

2.1 Themodel

We consider the two-sector RSL model of optimal growth with discounting. There are
two sectors: a consumption-good sector and an investment-good sector. The production
technology is Leontief. It requires one unit of labor and aC > 0 units of capital to
produce one unit of consumption good, and one unit of labor and aI ≥ 0 units of

10 Fujio (2005, 2008) characterizes the dynamic properties for the RSL model but without discounting,
where extinction will never take place on the optimal path. Deng et al. (2021) depart from the optimal
growth paradigm and obtain eventual periodicity in the RSL setting of equilibrium growth.
11 But this is just the tip of the iceberg: even on limiting oneself to an aggregative stochastic environment,
one has a rich literature to contend with. In a pioneering paper, Stachurski (2002) provides sufficient
conditions for existence and stability of a positive steady state for a stochastic model of optimal growth
with unbounded shock. Nishimura and Stachurski (2005) apply an Euler equation technique to extend
the stability result. Also see Kamihigashi (2007), Kamihigashi and Roy (2006, 2007), Kamihigashi and
Stachurski (2014), Mitra and Sorger (2014), and Mitra and Roy (2012, 2021, 2022).
12 All the proofs, lemmas, and additional characterization results are collected in the “Appendix”.
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capital to produce b > 0 units of investment good. If aC > aI , the consumption good
sector is more capital intensive than the investment good sector, and if aC < aI , the
investment good sector is more capital intensive than the consumption good sector. If
aC = aI , the model boils down to its one-sector setting. Note that we assume aC > 0
because otherwise the planner would have no incentives to produce investment goods.
However, we do not exclude the possibility of aI = 0 which corresponds to the
two-sector RSS setting as in Khan and Mitra (2005).

Labor supply is fixed and normalized to be one in each time period t . Denote the
capital stock in the current period by x , the capital stock in the next period by x ′, and
the depreciation rate of capital by d ∈ (0, 1]. The transition possibility set is given by

� = {(x, x ′) ∈ IR+ × IR+ : x ′ − (1 − d)x ≥ 0, x ′ − (1 − d)x ≤ bmin{1, x/aI }},

where IR+ is the set of non-negative real numbers. Denote by y the output of con-
sumption good. For any (x, x ′) ∈ �, we define a correspondence

�(x, x ′) =
{
y ∈ IR+ : y ≤ 1

aC

(
x − aI

b
(x ′ − (1 − d)x)

)

and y ≤ 1 − 1

b
(x ′ − (1 − d)x)

}
.

A felicity function, w : IR+ −→ IR, is linear and given by w(y) = y. The reduced
form utility function, u : � −→ IR+, is defined as

u(x, x ′) = max{w(y) : y ∈ �(x, x ′)}.

The future utility is discounted with a discount factor δ ∈ (0, 1). Define

ζ ≡ b

aC − aI
− (1 − d) (1)

to be the MRT of capital between today and tomorrow under full utilization of both
production factors. Define

θ ≡ b

aI
+ (1 − d) (2)

to be the MRT when the economy fully specializes in investment-good production
with zero consumption good being produced for x ≤ aI .13 We then write explicitly
the reduced-form utility function

u(x, x ′) =
⎧⎨
⎩

aI θ
aCb

x − aI
aCb

x ′, for (aC − aI )x ′ ≤ ((1 − d)(aC − aI ) − b)x + aCb

1−d
b x − 1

b x
′ + 1, for (aC − aI )x ′ ≥ ((1 − d)(aC − aI ) − b)x + aCb

(3)

13 Later we will simply refer to θ as the MRT with zero consumption.

123



On optimal extinction in the matchbox two-sector model

In the reduced-form utility function above, the first line stands for the case of full
utilization of capital while the second line stands for the case of full employment of
labor.

An economy E consists of a triplet (�, u, δ). A program starting from x̄ ∈ IR+ is a
sequence {xt , yt }∞t=0 such that x0 = x̄ and for any non-negative integer t, (xt , xt+1) ∈
� and yt = max�(xt , xt+1). A program {x∗

t , y
∗
t }∞t=0 starting from x̄ ∈ IR+ is said to

be optimal if

∞∑
t=0

δt [u(xt , xt+1) − u(x∗
t , x

∗
t+1)] ≤ 0

for every program {xt , yt }∞t=0 starting from x̄ . An optimal program starting from x̄ ∈
IR+ is said to be a stationary optimal program if xt = x̄ for any non-negative integer
t . A stationary optimal stock x̄ is a non-negative real number such that there is a
stationary optimal program from x̄ . A stationary optimal stock x̄ is said to be non-
trivial if u(x̄, x̄) > u(0, 0).

2.2 Basic geometry

Before we turn to the formal discussion of the optimal policy, we describe in this
subsection the basic geometry of the RSL model. Figure 1 illustrates the transition
possibility set for the case of a capital-intensive investment-good sector (aC < aI ).
The OD line corresponds to full specialization of the economy in the consumption-
good sector. The OV L line corresponds to full specialization of the economy in the
investment-good sector. The slope of the OV line is θ . The MV line corresponds to
the case of full utilization of labor and capital. The slope of this line is (−ζ ). When the
investment-good sector is capital intensive as it is in Fig. 1, if a production plan is above
the MV line, capital is fully utilized whereas there is surplus labor. If a production
plan is below the MV line, labor is fully employed whereas there is excess capacity.
Moreover, IC1, IC2, and IC3 in orange are the indifference curves for per-period
utility. Lower indifference curves are associated with higher utility.

2.3 Preliminaries

We take the dynamic programming approach in our analysis. Define the value function
V : IR+ → IR as

V (x) =
∞∑
t=0

δt u(xt , xt+1)

where {xt , yt } is an optimal program starting from x0 = x . For each x ∈ IR+, the
Bellman equation

V (x) = max
x ′∈�(x)

{u(x, x ′) + δV (x ′)}
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Fig. 1 The basic geometry for aC < aI and δ < 1/θ

holds where �(x) = {x ′ : (x, x ′) ∈ �}. For each x ∈ IR+, define the optimal policy
correspondence h(x) = argmaxx ′∈�(x){u(x, x ′) + δV (x ′)}. If h(x) is a singleton for
any x ∈ IR+, thenwe define the optimal policy function g : IR+ → IR+ as g(x) ∈ h(x)
for any x ∈ IR+. A program {xt , yt } from x0 is optimal if and only if it satisfies the
equation:

V (xt ) = u(xt , xt+1) + δV (xt+1) for t ≥ 0.

The modified golden rule is formally defined as a pair (x̂, p̂) ∈ R
2+ such that

(x̂, x̂) ∈ � and

u(x̂, x̂) + (δ − 1) p̂x̂ ≥ u(x, x ′) + p̂(δx ′ − x) for all (x, x ′) ∈ �.

123



On optimal extinction in the matchbox two-sector model

Or equivalently, the modified golden rule stock satisfies u(x̂, x̂) ≥ u(x, x ′) for all
(x, x ′) ∈ � such that x ≤ (1 − δ)x̂ + δx ′. Note that x = (1 − δ)x̂ + δx ′ corresponds
to the 1/δ-line in Fig. 1. An economy is said to be δ-normal if there exists (x, x ′) ∈ �

such that x ≤ δx ′ and u(x, x ′) > u(0, 0). The following lemma provides necessary
and sufficient condition for δ-normality in the RSL model.

Lemma 1 The economy E is δ-normal if and only if δ > 1/θ.

We now state the main existence result from Khan and Mitra (1986).

Theorem KM. For a class E of qualitatively-delineated economies, if the economy is
δ-normal, then there exists a modified golden-rule stock, which is also a non-trivial
stationary optimal stock.

The RSL economy E satisfies all the assumptions in Khan and Mitra (1986) and
thus is in E . We apply Theorem KM to obtain the following characterization of the
modified golden rule which has been shown in Deng et al. (2019) and Fujio et al.
(2021).

Proposition 1 If δ > 1/θ , then there exists a modified golden rule given by

(x̂, p̂) =
(

aCb

b + d(aC − aI )
,

1

(aC − aI )(1 + δζ )

)
,

and the modified golden rule stock x̂ is the unique non-trivial stationary optimal stock.

The goal of our analysis in what follows is to characterize the optimal policy in
the absence of δ-normality. Without further explicit mention, from now on we will
impose the following assumption on the discount factor,

δ ≤ 1/θ. (4)

This assumption stands in sharp contrast to the assumption of δ > 1/θ commonly
imposed in the existing literature. For δ ≤ 1/θ , the RSL model is no longer δ-normal
and thus Theorem KM no longer applies. We will explore whether there still exists
a stationary optimal stock and if not, how the economy evolves under the optimal
policy. It should be noted that, in the two-sector RSS setting Khan and Mitra (2005),
the investment good sector is assumed to be infinitely productive (aI = 0) and as a
result, this case of δ ≤ 1/θ is ruled out in the first place.

To facilitate exposition in the subsequent sections, we give a formal definition of
extinction in the long run. We distinguish the extinction phase without investment,
in which the economy fully specializes in consumption-good production, from the
extinction phase with investment, in which the economy may still allocate resources
to the investment-good sector despite the gradual depletion of capital stock.

Definition 1 The economy is said to be in the extinction phase without investment if
the optimal policy is given by g(x) = (1 − d)x for any x > 0. The economy is said
to be in the extinction phase with investment if the optimal policy yields the capital
stock to converge to zero in the long run for any initial stock but there exists x > 0
and x ′ ∈ h(x) such that x ′ > (1 − d)x .
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According to this definition, the economy is in the extinction phase without invest-
ment if the transition path is entirely along the OD line as in Fig. 1, and the economy
is in the extinction phase with investment if the optimal policy yields depletion of
capital in the long run but the transition path is not entirely along the OD line.

3 Optimal extinction without investment

We first examine the case of a capital-intensive consumption-good sector (aC > aI ).
It is known from the literature that, for δ > 1/θ , the optimal policy for this case
involves complicated bifurcation structures and a complete characterization has not
been satisfactorily obtained even for the special case of aI = 0 (Khan andMitra 2020).
However, for δ < 1/θ , the optimal policy for the case of aC > aI is surprisingly simple
and uniform.

Theorem 1 In the case of a capital-intensive consumption-good sector (aC > aI ),
all rates of time preference δ less than the inverse of the MRT with zero consumption
(δ < 1/θ) lead to an optimal policy under which the economy is in the extinction
phase without investment.

Corollary 1 In the case of a capital-intensive consumption-good sector (aC > aI )
and circulating capital (d = 1), if δ < 1/θ , then the optimal policy yields immediate
extinction: g(x) = 0 for any x > 0.

From Theorem 1, there does not exist a non-trivial stationary optimal stock for
δ < 1/θ . As illustrated in Fig. 2, the optimal policy is represented by the OD line:
The economy convergesmonotonically to extinction (x = 0) with no investment along
the optimal path. Corollary 1 further suggests that if capital is circulating (d = 1),
capital will be depleted just in one period.

We now turn to the case of a capital-intensive investment-good sector (aC < aI ).
We first define

μ0 ≡ 1
b
aC

+ (1 − d)
<

1
b
aI

+ (1 − d)
= 1

θ
,

where the inequality follows from aC < aI . It is worth noting that from the formula
above, there is a direct parallelism between μ0 and 1/θ.

Theorem 2 In the case of a capital-intensive investment-good sector (aI > aC ), all
rates of time preference δ less than a technological upper bound (δ < μ0) lead to an
optimal policy under which the economy is in the extinction phase without investment.

Corollary 2 In the case of a capital-intensive investment-good sector (aI > aC ) and
circulating capital (d = 1), if δ < μ0, then the optimal policy yields immediate
extinction: g(x) = 0 for any x > 0.

Theorem 2 says that if the discount factor is sufficiently low, the optimal policy
for the case of aC < aI , represented by the OD line in Fig. 1, is the same as that
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Fig. 2 The optimal policy for aC > aI and δ < 1/θ

for aC > aI . Theorems 1 and 2 underscore that impatience leads to extinction: The
economy fully specializes in the consumption-good sector if agents are sufficiently
impatient. Then, what remains open is for the discount factor between μ0 and 1/θ in
the case of a capital-intensive investment-good sector. This is what we turn to next.

4 Optimal extinction with investment

In the case of a capital-intensive investment-good sector (aI > aC ), we will show
that if the discount factor δ is in (μ0, 1/θ), the economy will converge to extinction
in the long run but with positive investment along the transition path. The optimal
policy bifurcates with respect to the discount factor in a rather intriguing manner.
To characterize the optimal policy and its bifurcation structure, we first introduce a
sequence of thresholds for the discount factor.
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Fig. 3 The single crossing property of zn(·)

4.1 Thresholds for the discount factor

To define a sequence of thresholds for the discount factor δ ∈ [μ0, 1/θ), we consider,
for any natural number n, the following rational function from [0, 1/θ ] to R as

zn(δ) ≡ −1

b
+ δ

(
−

∑n−1
i=0 (−δζ )i

aI − aC
+ (−δζ )n

aC (1 − δ(1 − d))

)
. (5)

Further, we define

z0(δ) ≡ −1

b
+ δ

aC (1 − δ(1 − d))
, (6)

which admits a unique root over the interval [0, 1/θ ] given by μ0 as defined in the
last section. The function zn(·) plays a central role in the establishment of the optimal
policy. The following two lemmas state some useful properties of zn(·).
Lemma 2 Let aI > aC .For any non-negative integer n, there existsμn ∈ (0, 1/θ) such
that (i) zn(μn) = 0; (ii) zn(δ) < 0 for δ ∈ [0, μn); (iii) zn(δ) > 0 for δ ∈ (μn, 1/θ ].
Lemma 3 Let aI > aC . For any δ ∈ (0, 1/θ) and any natural number n, zn(δ) <

zn−1(δ).

The qualitative features of zn(·) are illustrated in Fig. 3. As shown in Lemma 2,
zn(·) has an important “single-crossing” property on [0, 1/θ ]. The curve for zn(·),
starting from zn(0) < 0 and ending at zn(1/θ) > 0, always cross the horizontal axis
only once, which guarantees a unique root. Moreover, according to Lemma 3, for any
non-negative integer n, the curve of zn+1(·) always lies below that of zn(·), which
further suggests the monotonicity of the root associated with zn(·) with respect to n.
Based on the properties of zn(·) stated in Lemmas 2 and 3, we can prove the following
proposition.
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Proposition 2 Let aI > aC . For any n ∈ N, there exists a unique root of zn(δ) = 0
for δ ∈ (0, 1/θ), denoted by μn. The sequence {μn}∞n=0 satisfies (i) μn > μn−1 for
any n ∈ N and (ii) limn→∞ μn = 1/θ.

According to Proposition 2, there is a unique μn ∈ (0, 1/θ) such that zn(μn) = 0.
The family of rational functions {zn(·)}∞n=0 then yield a well-defined sequence of
technological parameters {μn}∞n=0. This sequence starts fromμ0, is strictly increasing,
and converges to 1/θ. In what follows, we will demonstrate this sequence to be the
thresholds of the discount factor at which the optimal policy bifurcates.

4.2 Optimal delays in extinction: bifurcation results

In this subsection,we state themain theorem for extinctionwith investment for the case
of θ ≥ 1, under which the economy can sustain a positive level of capital stock in the
long run provided that a sufficient amount of recourse is allocated to the investment-
good sector. The optimal policy for the (neglected) case of θ < 1, under which capital
stock depletes in the long run even when the economy fully specializes in investment-
good production, is qualitatively similar and will be discussed in the next section on
the special cases of the model.

To ease the exposition of our characterization results, we define another sequence
{xn}∞n=0 of thresholds for capital stock as follows: x0 ≡ aC and for any n ∈ N,

xn = −1

ζ

(
xn−1 − aCb

aC − aI

)
. (7)

We illustrate the construction of this sequence in Fig. 4. The sequence starts from
x0 = aC . Given our construction, for any n ∈ N, (xn, xn−1) is on the MV line
where capital and labor are fully utilized. Geometrically, it is clear that this sequence
converges to x̂ .

Lemma 4 Let aC < aI .The sequence {xn}∞n=0 is monotonically increasing: xn > xn−1
for any n ∈ N. Further, limn→∞ xn = x̂ for θ > 1 and limn→∞ xn = aI for θ = 1.

Lemma4 states formally themonotonicity and the limit of {xn}∞n=0 for θ ≥ 1.14With
Lemma4 and Proposition 2,we are ready to present themain characterization result for
extinction with investment. The next proposition summarizes the bifurcation structure
of the optimal policy with respect to the discount factor δ for δ ∈ (μ0, 1/θ). To bring
out the most salient bifurcation pattern, we focus on the case of δ strictly between two
consecutive thresholds. In the “Appendix”, we present the additional characterization
results for δ = μn for which the optimal policy becomes a correspondence.

14 Recall x̂ = aCb/(b + d(aC − aI )), so the limit of {xn}∞n=0 can also be uniformly written as
limn→∞ xn = aCb/(b + d(aC − aI )) for both θ < 1 and θ = 1.
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Fig. 4 The construction of xn for aC < aI

Proposition 3 Let aC < aI , θ ≥ 1, and 0 < d < 1. If μn−1 < δ < μn for n ∈ N,
then the optimal policy function is given by

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − d)x for x ∈ (0, aC ]
−ζ x + aCb

aC−aI
for x ∈ (aC , xn]

xn−1 for x ∈ (xn,
xn−1
1−d ]

(1 − d)x for x ∈ (
xn−1
1−d ,∞)

.

Figure 5 shows how the optimal policy changes with the discount factor. The first
panel corresponds to the case covered by Theorem 2. The second panel plots the
optimal policy for δ ∈ (μ0, μ1). The policy deviates from the OD line for x ∈
(aC , aC/(1− d)). For x ∈ (aC , x1], the planner chooses to fully utilize the resources,
and for x ∈ (x1, aC/(1 − d)), the planner targets the investment-good production at
a level such that capital stock tomorrow equals exactly aC . Under this policy, for any
initial stock above aC , the economy deviates from the OD line for exactly one period
along its transition path.
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Fig. 5 The optimal policy for aC < aI , θ > 1 and 0 < d < 1

The third and fourth panel of Fig. 5 illustrate the optimal policy for the discount fac-
tor in (μ1, μ2) and that in (μ2, μ3), respectively. The interval for capital stock at which
the investment-good sector is activated enlarges as the discount factor increases, but
the qualitative features of the transition dynamics remain the same: For δ ∈ (μ0, 1/θ),

the optimal policy always consists of four segments, the middle two of which corre-
spond to the case of positive investment. Moreover, for any positive integer n, if the
discount factor is in (μn−1, μn), the economy will deviate from the OD line by pro-
ducing the investment goods for exactly n periods. Since we know from Proposition 2
that the entire sequence {μn}∞n=0 is strictly increasing and converges to 1/θ , there are
infinitely many bifurcations with respect to the discount factor. As the discount factor
converges to 1/θ , the horizontal segment of the optimal policy will also approach the
modified golden rule stock level x̂ , leading to more periods of delay in extinction.
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Proposition 4 Let aC < aI , θ ≥ 1, and d = 1. If μn−1 < δ < μn for n ∈ N, then the
optimal policy function is given by

g(x) =
⎧⎨
⎩
0 for x ∈ (0, aC ]
−ζ x + aCb

aC−aI
for x ∈ (aC , xn]

xn−1 for x ∈ (xn,∞)

.

To bring out optimal delays in extinction in its starkest form, we present the optimal
policy for circulating capital (d = 1) in Proposition 4. From Corollary 2, we know
the optimal policy yields immediate extinction for δ < μ0. For δ ∈ (μ0, 1/θ), as
shown in Fig. 6, the economy produces investment goods for any x > aC . The higher
the discount factor is, the more periods the economy will sustain full utilization of
resources (on theMV line) during the transition dynamics. In particular, for any initial
stock above xn and any positive integer n, if the discount factor is in (μn−1, μn), the
economy will produce xn−1 units of investment goods in the first period, then stay on
the phase of full utilization of production resources for (n − 1) periods, and reach the
state of extinction after that.

From Proposition 2, the interval [μ0, 1/θ) can be partitioned into {[μn−1, μn)}∞n=1,
so the following theorem follows immediately from the characterization results above.

Theorem 3 In the case of a capital-intensive investment-good sector (aI > aC ) and a
positive capital stock being potentially sustainable (θ ≥ 1), all rates of time preference
δ between the two technological bounds (μ0 ≤ δ < 1/θ) lead to an optimal policy
under which the economy is in the extinction phase with investment.

Theorem 3 and the results in the previous section point to an important asymmetry:
investment along the transition path to extinction canpossibly occuronly in the case of a
capital-intensive investment-good sector. To understand the source of this asymmetry,
we consider the following intertemporal decision. Let capital stock today x to be
slightly above aC such that in the absence of any investment, capital stock tomorrow
x ′ = (1− d)x falls under aC . Suppose the planner deviates from full specialization in
consumption goods to allocate infinitesimal amount of resources to investment. Given
x > aC and investment being infinitesimal, the economy is still in the region of excess
capacity and thus the marginal cost of investment in terms of the consumption goods
today is given by 1/b. We show that regardless of the capital intensity condition, for
δ < 1/θ, it is optimal for the economy to specialize in the consumption-good sector
when capital stock is below aC and there is excess supply of labor. Thus, for x ′ < aC ,
the economy enters the extinction phase without investment and the marginal return
to investment is given by

δ

(
1

aC
+ δ(1 − d)

aC
+ δ2(1 − d)2

aC
+ · · ·

)
= δ

aC (1 − δ(1 − d))
.

When the consumption-good sector is capital intensive (aC > aI ), for δ < 1/θ ,

δ

aC (1 − δ(1 − d))
<

1

aC (θ − (1 − d))
= aI

aC
· 1
b

<
1

b
,
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Fig. 6 The optimal policy for aC < aI , θ > 1, and d = 1

where the second inequality follows from aC > aI , which implies the marginal cost of
investment exceeds the marginal return. In contrast, when the investment-good sector
is capital intensive, for δ ∈ (μ0, 1/θ),

δ

aC (1 − δ(1 − d))
>

1

b
.

Because it requires relatively less capital to produce consumption goods for aC <

aI , the marginal return to investment can potentially exceed the marginal cost. As a
result, optimal extinction with investment emerges in the case of a capital-intensive
investment-good sector. Further, for a larger discount factor within the interval of
(μ0, 1/θ), the planner is more patient and thus has more incentives to invest, which
translates into more periods of delay in extinction.

Moreover, the results on extinction in Theorems 1–3 yield a uniform condition of
the non-existence of a non-trivial stationary optimal stock:15 when the δ-normality

15 The special cases of θ < 1 and aC = aI are covered in the next section.
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condition is strictly violated (δ < 1/θ), the only stationary optimal stock that the
model admits is the zero stock. The following proposition formally states this result.

Proposition 5 For δ < 1/θ , there does not exist a non-trivial stationary optimal stock.

5 Optimal policy: some special cases

5.1 The unsustainable technology case:� < 1

We now consider the case of θ < 1. In this case, regardless of the investment decision,
it is technologically infeasible to sustain any positive capital stock in the long run and
extinction is guaranteed for any discount factor. Since the existing literature assumes
the fulfillment of the δ-normality condition with δ > 1/θ , which requires θ > 1, this
unsustainable technology case has largely been neglected. Since Theorem 1 applies
to both θ ≥ 1 and θ < 1, we focus on the case of a capital-intensive investment-good
sector. Our next proposition establishes the possibility of deferred extinction for this
neglected case.

Proposition 6 Let aC < aI , θ < 1, and 0 < d < 1.

(i) If μ0 ≥ 1, the optimal policy function is given by g(x) = (1 − d)x for any x .
(ii) If μ0 < 1, there exists n0 ∈ N such that μn0−1 < 1 ≤ μn0 . For δ ≤ μn0−1,

characterization of the optimal policy follows the case of θ ≥ 1. For μn0−1 < δ <

1, the optimal policy function is given by

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − d)x for x ∈ (0, aC ]
−ζ x + aCb

aC−aI
for x ∈ (aC , xn0 ]

xn0−1 for x ∈ (xn0 ,
xn0−1

1−d ]
(1 − d)x for x ∈ (

xn0−1

1−d ,∞)

.

According to Proposition 6, even the investment-good sector is highly unproductive,
as long as the technological lower boundμ0 and the discount factor satisfyμ0 < δ < 1,
the social planner would still have the incentive to allocate resources to the investment-
good sector along the transition path to extinction. Qualitatively, the main difference
between this case and the benchmark case of θ ≥ 1 in the previous section is that
there are only a finite number of bifurcations of the optimal policy with respect to the
discount factor for θ < 1. Figure 7 illustrates the bifurcation structure for the case of
n0 = 3. Since μ3 ≥ 1 > μ2, there are three bifurcation values for the discount factor,
μ0, μ1 and μ2. For δ > μ2, the optimal policy is always represented by OMV3M3D.

In the next proposition, we extend the result above to the case of circulating capital.

Proposition 7 Let aC < aI , θ < 1, and d = 1. If μ0 ≥ 1, the optimal policy
function is given by g(x) = 0 for x > 0. If μ0 < 1, there exists n0 ∈ N such that
μn0−1 < 1 ≤ μn0 . If δ ≤ μn0−1, characterization of the optimal policy follows the
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Fig. 7 The optimal policy for aC < aI and θ < 1

case of θ ≥ 1. If μn0−1 < δ < 1, the optimal policy function is given by

g(x) =
⎧⎨
⎩
0 for x ∈ (0, aC ]
−ζ x + aCb

aC−aI
for x ∈ (aC , xn0 ]

xn0−1 for x ∈ (xn0 ,∞)

.

To summarize the bifurcation structure for the case of a capital-intensive investment-
good sector, Fig. 8 illustrates the ordering of the thresholds for the discount factor
with respect to 1/θ and 1. There are generically two possibilities. For θ > 1, the unit
interval can be partitioned into three regions. The middle region contains the sequence
{μn}∞n=0, which gives rise to infinite bifurcations. For θ < 1, only a finite number of
elements in the sequence will be in the unit interval, leading to finite bifurcations. It
should be noted that the second panel of Fig. 8 is based on the assumption of μ0 < 1.
It is also possible to have μ0 ≥ 1, in which case there is extinction without investment
for any discount factor.
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Fig. 8 The sequence {μn}∞n=0 and 1/θ for aC < aI

5.2 The knife-edge case for the discount factor: ı = 1/�

In this subsection, we present the results concerning an important bifurcation value for
the discount factor, δ = 1/θ. For this knife-edge case, the optimal policy becomes a
correspondence and there exists a continuum of non-trivial stationary optimal stocks.

Proposition 8 Let aC > aI , θ > 1, and δ = 1/θ . Then the optimal policy correspon-
dence is given by

h(x) =

⎧⎪⎨
⎪⎩

[(1 − d)x,min{aC , θx}] for x ∈ (0, aI ][
(1 − d)x,min

{
aC ,−ζ x + aCb

aC−aI

}]
for x ∈ (aI , aC ]

{(1 − d)x} for x ∈ (aC ,∞)

Proposition 9 Let aC < aI , θ > 1, and δ = 1/θ . The optimal policy correspondence
is given by

h(x) =

⎧⎪⎨
⎪⎩

[max{(1 − d)x,−ζ x + aCb
aC−aI

}, θx] for x ∈ (0, x̂
θ
]

[max{(1 − d)x,−ζ x + aCb
aC−aI

}, x̂] for x ∈ ( x̂
θ
, x̂]

{max{x̂, (1 − d)x}} for x ∈ (x̂,∞)

.

Propositions 8 and 9 present the optimal policy correspondence for aC > aI and
aC < aI , respectively. Figure 9 illustrates the optimal policy for both cases, in which
the shaded area in red represents the optimal policy being non-unique. In particular,
for both cases, any capital stock in (0, x̂] is a non-trivial stationary optimal stock, thus
testifying that δ-normality is not a necessary condition for the existence of a non-trivial
stationary optimal stock.

123



On optimal extinction in the matchbox two-sector model

Fig. 9 The optimal policy for δ = 1/θ

5.3 The one-sector case: aC = aI

We now consider the optimal policy for the case of two sectors having the same capital
intensity (aC = aI ), which resembles a one-sector economy. The optimal policy for
this case follows closely that for the case of a capital-intensive consumption-good
sector (aC > aI ), with a slight difference for δ = 1/θ , as summarized in the following
proposition.

Proposition 10 Consider the one-sector case (aC = aI ). If δ < 1/θ , then the optimal
policy function is given by g(x) = (1 − d)x for any x > 0. If δ = 1/θ , then the
optimal policy correspondence is given by

h(x) =
{ [(1 − d)x,min{aC , θx}] for x ∈ (0, aC ]

[(1 − d)x,max{aC , (1 − d)x}] for x ∈ (aC ,∞)

The result of this one-sector case can be usefully compared with Theorem 3. In the
one-sector case, when the δ-normality condition is strictly violated (δ < 1/θ), there
is no investment along the path to extinction. This is because the felicity function is
assumed to be linear and as a result, the planner has no incentives to delay extinction
for intertemporal consumption smoothing. If instead we impose strict concavity on the
felicity function in this one-sector setting, delayed extinction can arise. In contrast,
Theorem 3 obtains delayed extinction in the two-sector setting even without strict
concavity. Our results taken together suggest that beyond consumption smoothing,
there is another important technological reason for investment along the extinction
path.
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5.4 A numerical example

We finally consider a numerical example of how the optimal policy bifurcates with
respect to the discount factor in the case of a capital-intensive investment-good sector.
Let b = 1, aC = 2/3, aI = 4/3, and d = 1/2. From Eqs. (1) and (2), we have
θ = 5/4 and ζ = −2. Then, from Eqs. (5) and (6), we have

z0(δ) = −1

b
+ δ

(
1

aC (1 − δ(1 − d))

)
= −1 + 3δ

2 − δ
,

z1(δ) = −1

b
+ δ

(
− 1

aI − aC
− δζ

aC (1 − δ(1 − d))

)
= −1 + δ

(
−3

2
+ 6δ

2 − δ

)
,

z2(δ) = −1

b
+ δ

(
− 1 − δζ

aI − aC
+ (δζ )2

aC (1 − δ(1 − d))

)

= −1 + δ

(
−3 + 6δ

2
+ 12δ2

2 − δ

)
,

which yield μ0 = 1/2, μ1 = 2/3, μ2 ≈ 0.73, the first three bifurcation values
for the discount factor, and we know limn→∞ μn = 1/θ = 4/5. From Eq. (7), we
obtain x0 = aC = 2/3, x1 = 5/6, and x2 = 11/12. The optimal policy functions for
δ = 0.4 ∈ (0, μ0), δ = 0.6 ∈ (μ0, μ1), and δ = 0.7 ∈ (μ1, μ2) are plotted in Fig. 10.

6 Concluding remarks

In summary, we provide a complete and comprehensive characterization of optimal
policy for the two-sector RSL model in the absence of δ-normality: a categorization
of extinction when the discount factor is below the MRT with zero consumption
(δ ≤ 1/θ ). For δ < 1/θ , the optimal policy always yields extinctionwithout investment
along the transition path in the case of a capital-intensive consumption-good sector,
whereas an intricate bifurcation structure emerges in the case of a capital-intensive
investment-good sector. If the investment-good sector is capital intensive, and if the
discount factor is between two technological bounds (μ0 < δ < 1/θ), the planner
needs to allocate resources to the investment-good sector with resources sometimes
being fully utilized so that extinction can be deferred. The results are easy to state, but
difficult to obtain.

Not surprisingly, our investigation leaves several questions open. For one thing,
the results of this paper lead us to pose the question as to the optimal policy for
the unsustainable case (θ < 1) in the RSL model without discounting. It is to us
natural to pose survival and extinction issue in an undiscounted setting: if Ram-
sey’s hesitations regarding discounting apply anywhere, they do so here. Second,
from an abstract theoretical point of view, one could view the RSL model as an
exalted example.16 Because of the linear felicity function, themotive of inter-temporal

16 We thank our referee for the encouragement to elaborate on how our results may continue to hold in
more general settings.

123



On optimal extinction in the matchbox two-sector model

Fig. 10 A numerical example (b = 1, aC = 2/3, aI = 4/3, d = 1/2)

consumption smoothing is absent in our current setting, and thus the reason behind
investment along the extinction path is entirely a technological one. If we relax the
linearity assumption of the felicity function, we would expect that with consump-
tion smoothing, the qualitative difference in investment along the extinction path to
be less stark between the case of a capital-intensive consumption-good sector and
that of a capital-intensive investment-good sector. Perhaps more interesting is to
investigate how extinction with investment hinges on the Leontief specification of
the production functions. We speculate that the bifurcation structure concerning the
delay in extinction that we identify in the paper would continue to emerge in a set-
ting with a more general two-sector technological specification. However, once we
activate Inada conditions, the sharp specialization patterns, together with the regimes
of excess capacity and unemployment, might disappear along the transition path.
Finally, it is of interest to see how the results presented in this paper survive in
a game-theoretic setting with many interacting agents, as in the insightful exam-
ple of Mitra and Sorger (2014). We plan to take up those open questions in future
research.

Funding Liuchun Deng acknowledges the support of the Start-up Grant from Yale-NUS College.
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A Appendix

We organize the Appendix in three parts. We first present additional characterization
results on the optimal policy correspondence. We then provide the proofs of all the
main results presented in the paper. Last, we present and prove lemmas that are used
in the proofs of the main results.

A.1 Further characterization results

We present two additional characterization results on the optimal policy when the
discount factor is equal to a cutoff value μn . Like the knife-edge case we identify in
the paper for δ = 1/θ , the optimal policy becomes a correspondence. Proposition A1
concerns the case of durable capital (0 < d < 1) and Proposition A2 concerns the
case of circulating capital (d = 1).

Proposition A1 Let aC < aI , θ ≥ 1, and 0 < d < 1.

(i) If δ = μ0, then the optimal policy correspondence is given by

h(x) =

⎧⎪⎪⎨
⎪⎪⎩

{(1 − d)x} for x ∈ (0, aC ]
[(1 − d)x,−ζ x + aCb

aC−aI
] for x ∈ (aC , x1]

[(1 − d)x, aC ] for x ∈ (x1,
aC
1−d ]

{(1 − d)x} for x ∈ (
aC
1−d ,∞)

.

(ii) If δ = μn for n ∈ N, then the optimal policy correspondence is given by

h(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{(1 − d)x} for x ∈ (0, aC ]
{−ζ x + aCb

aC−aI
} for x ∈ (aC , xn]

[xn−1,min{−ζ x + aCb
aC−aI

, xn}] for x ∈ (xn,
xn−1
1−d ]

[(1 − d)x,min{−ζ x + aCb
aC−aI

, xn}] for x ∈ (
xn−1
1−d , xn

1−d ]
{(1 − d)x} for x ∈ ( xn

1−d ,∞)

.

Proposition A2 Let aC < aI , θ ≥ 1, and d = 1.

(i) If δ = μ0, then the optimal policy correspondence is given by

h(x) =
⎧⎨
⎩

{0} for x ∈ (0, aC ]
[0,−ζ x + aCb

aC−aI
] for x ∈ (aC , x1]

[0, aC ] for x ∈ (x1,∞)

.
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(ii) If δ = μn for n ∈ N, then the optimal policy correspondence is given by

h(x) =

⎧⎪⎪⎨
⎪⎪⎩

{0} for x ∈ (0, aC ]
{−ζ x + aCb

aC−aI
} for x ∈ (aC , xn]

[xn−1,−ζ x + aCb
aC−aI

] for x ∈ (xn, xn+1]
[xn−1, xn] for x ∈ (xn+1,∞)

.

A.2 Proofs

Proof of Lemma 1 We first prove the “if” part. Let δ > 1/θ . Pick ε > 0 such that
ε < aI and ε < aC . Since δ > 1/θ , θ > 1/δ and θ > (θ + 1/δ)/2 > 1/δ. Since
0 < ε < aC , 0 < ε < aI , and (θ + 1/δ)/2 < θ , (ε, (θ + 1/δ)ε/2) ∈ � and
u(ε, (θ + 1/δ)ε/2) > 0 = u(0, 0). Moreover, since δ > 1/θ , δ((θ + 1/δ)ε/2) =
(δθ + 1)ε/2 > ε. Thus, the economy is δ-normal. Now we turn to the “only if” part.
Let δ ≤ 1/θ . For any (x, x ′) ∈ �, x ′ ≤ θx ≤ x/δ which implies x ≥ δx ′. The equality
holds only if δ = 1/θ and x ′ = θx . However, if x ′ = θx , u(x, x ′) = 0 = u(0, 0), so
the economy is not δ-normal. Then, we have obtained the desired conclusion. ��

Proof of Theorem 1 We first consider 0 < d < 1. We adopt the standard “guess-and-
verify” approach. Postulate a candidate value function based on the policy function
g(x) = (1 − d)x for any x :

W (x) =
{

x
aC (1−δ(1−d))

for x ∈ [0, aC ]
1−δn

1−δ
+ δn(1−d)n x

aC (1−δ(1−d))
for x ∈ (

aC
(1−d)n−1 ,

aC
(1−d)n

] , (A.1)

wheren = 1, 2, 3 . . .Wenowclaim that for any x ,W (x) satisfies theBellman equation

W (x) = max
x ′∈�(x)

{u(x, x ′) + δW (x ′)}.

To this end, we consider four cases: (i) x ∈ (0, aI ); (ii) x ∈ [aI , aC ]; (iii) x ∈
(aC ,

aC
1−d ]; (iv) x ∈ (

aC
(1−d)n−1 ,

aC
(1−d)n

] for n = 2, 3, 4...

Case (i) For any (x, x ′) ∈ � such that x < aI , we have (aC − aI )x ′ < ((1− d)(aC −
aI ) − b)x + aCb. Using the reduced-form utility function (3), for x ′ ≤ aC , we have

W0(x, x
′) ≡ u(x, x ′) + δW (x ′) = aI θ

aCb
x − aI

aCb
x ′ + δx ′

aC (1 − δ(1 − d))
,

∂W0(x, x ′)
∂x ′ = − aI

aCb
+ δ

aC (1 − δ(1 − d))
= aI (δθ − 1)

aCb(1 − δ(1 − d))
< 0, (A.2)

where the inequality follows from δθ < 1. For x ′ > aC , there exists a natural number
n such that x ′ ∈ (

aC
(1−d)n−1 ,

aC
(1−d)n

]. Similarly,
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W0(x, x
′) ≡ u(x, x ′) + δW (x ′) = aI θ

aCb
x − aI

aCb
x ′ + δ − δn+1

1 − δ

+ δn+1(1 − d)nx ′

aC (1 − δ(1 − d))
,

∂W0(x, x ′)
∂x ′ = − aI

aCb
+ δ(δ(1 − d))n

aC (1 − δ(1 − d))

< − aI
aCb

+ δ

aC (1 − δ(1 − d))
= aI (δθ − 1)

aCb(1 − δ(1 − d))
< 0,

where the first inequality follows from δ(1 − d) < 1 and n ≥ 1 and the second
inequality follows from δθ < 1. Then, for x ′ > aC , W0(x, x ′) strictly decreases with
x ′. Thus, for any x ′, W0(x, x ′) strictly decreases with x ′ and W0(x, x ′) attains its
maximum when x ′ attains its minimum: x ′ = (1 − d)x . Further, for x ∈ (0, aI ),

W (x) = x

aC (1 − δ(1 − d))
= x

aC
+ δ(1 − d)x

aC (1 − δ(1 − d))

= u(x, (1 − d)x) + δW ((1 − d)x).

Then the Bellman equation is satisfied for Case (i).
Case (ii) For (x, x ′) ∈ � such that x ∈ [aI , aC ], there are two subcases: (a) (aC −
aI )x ′ ≥ ((1− d)(aC − aI ) − b)x + aCb and (b) (aC − aI )x ′ < ((1− d)(aC − aI ) −
b)x +aCb. We first consider Subcase (a). Using the reduced-form utility function (3),
for x ′ ≤ aC ,

W0(x, x
′) ≡ u(x, x ′) + δW (x ′) = 1 − d

b
x − 1

b
x ′ + 1 + δx ′

aC (1 − δ(1 − d))
.

∂W0(x, x ′)
∂x ′ = −1

b
+ δ

aC (1 − δ(1 − d))

= δ(b/aC + (1 − d)) − 1

b(1 − δ(1 − d))
<

δθ − 1

b(1 − δ(1 − d))
< 0, (A.3)

where the first inequality follows from aC > aI and θ = b/aI +(1−d) and the second
inequality follows from δθ < 1. So W0(x, x ′) strictly decreases with x ′. Similarly,
we can show that W0(x, x ′) strictly decreases with x ′ for x ′ > aC . For Subcase (b),
similar to Case (i), we can show that W0(x, x ′) strictly decreases with x ′. In sum,
W0(x, x ′) attains its maximum when x ′ attains its minimum: x ′ = (1 − d)x . Then,
similar to Case (i), we can show that the Bellman equation is satisfied for Case (ii).
Case (iii) For any (x, x ′) ∈ � such that x ∈ (aC ,

aC
1−d ], we have (aC − aI )x ′ ≥

((1− d)(aC − aI ) − b)x + aCb. Similar to Subcase (a) of Case (ii), we can show that
(u(x, x ′)+δW (x ′)) attains its maximumwhen x ′ attains its minimum: x ′ = (1−d)x .
Further, for x ∈ (aC ,

aC
1−d ],

W (x) = 1 + δ(1 − d)x

aC (1 − δ(1 − d))
= u(x, (1 − d)x) + δW ((1 − d)x),
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where the last equation follows from u(x, (1 − d)x) = 1 for x ∈ (aC ,
aC
1−d ] and

(1 − d)x ≤ aC . Then, the Bellman equation is satisfied for Case (iii).
Case (iv) For any (x, x ′) ∈ � such that x ∈ (

aC
(1−d)n−1 ,

aC
(1−d)n

] (n = 2, 3, 4 . . .), we

have (aC − aI )x ′ ≥ ((1 − d)(aC − aI ) − b)x + aCb, following again Subcase (a) of
Case (ii), we can show that (u(x, x ′) + δW (x ′)) attains its maximum when x ′ attains
its minimum: x ′ = (1 − d)x . Further, for x ∈ (

aC
(1−d)n−1 ,

aC
(1−d)n

] and any positive
integer n ≥ 2,

W (x) = 1 − δn

1 − δ
+ δn(1 − d)nx

aC (1 − δ(1 − d))

= 1 + δ

[
1 − δn−1

1 − δ
+ δn−1(1 − d)n−1(1 − d)x

aC (1 − δ(1 − d))

]

= u(x, (1 − d)x) + δW ((1 − d)x),

where the last equation follows from u(x, (1 − d)x) = 1 for x ∈ (
aC

(1−d)n−1 ,
aC

(1−d)n
]

and (1 − d)x ∈ (
aC

(1−d)n−2 ,
aC

(1−d)n−1 ]. Then the Bellman equation is satisfied for Case
(iv).

In sum, we have verified that W (x) is the value function satisfying the Bellman
equation and the optimal policy is given by g(x) = (1 − d)x for any x > 0 and 0 <

d < 1. For the case of circulating capital (d = 1), we can apply essentially the same
argument as above to show that the optimal policy is given by g(x) = (1 − d)x = 0
for any x > 0 with the value function V (x) = x/aC for x ≤ aC and V (x) = 1 for
x > aC . Thus, we have obtained the desired conclusion. ��
Proof of Theorem 2 We first consider 0 < d < 1. Following the proof of Theorem 1,
we postulate a candidate value function W (·) to be the same as (A.1). We now claim
that if δ < μ0, then W (·) satisfies the Bellman equation. To this end, we consider two
cases: (i) x ≤ aC ; (ii) x > aC . For Case (i), the proof follows entirely Case (i) in
the proof of Theorem 1. For Case (ii), consider any (x, x ′) ∈ � such that x > aC .
There are two subcases: (a) (aC − aI )x ′ ≥ ((1 − d)(aC − aI ) − b)x + aCb and (b)
(aC − aI )x ′ < ((1 − d)(aC − aI ) − b)x + aCb. We first consider Subcase (a). For
x ′ ≤ aC ,

W0(x, x
′) ≡ u(x, x ′) + δW (x ′) = 1 − d

b
x − 1

b
x ′ + 1 + δx ′

aC (1 − δ(1 − d))
.

∂W0(x, x ′)
∂x ′ = −1

b
+ δ

aC (1 − δ(1 − d))
= (b + aC (1 − d))δ − aC

aCb(1 − δ(1 − d))

= b + aC (1 − d)

aCb(1 − δ(1 − d))
(δ − μ0) < 0, (A.4)

where the inequality follows from δ < μ0. So W0(x, x ′) strictly decreases with x ′.
For x ′ ∈ (

aC
(1−d)n−1 ,

aC
(1−d)n

] with n ∈ N,

∂W0(x, x ′)
∂x ′ = −1

b
+ δn+1(1 − d)n

aC (1 − δ(1 − d))
< −1

b
+ δ

aC (1 − δ(1 − d))
< 0,
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where the first inequality follows from n ≥ 1 and δ(1 − d) < 1 and the second
inequality follows from (A.4). This implies that W0(x, x ′) strictly decreases with x ′
for x ′ > aC . Taken together, W0(x, x ′) strictly decreases with x ′ for any x ′ and it is
maximized with x ′ = (1− d)x . For Subcase (b), similar to Case (i), we can show that
W0(x, x ′) attains its maximum for x ′ = (1− d)x . Following the proof of Theorem 1,
we can further obtain W (x) = u(x, (1− d)x) + δW ((1− d)x) for any x > 0. So we
have verified that W (·) satisfies the Bellman equation. For the case of d = 1, we can
follow essentially the same argument to show that g(x) = 0 for any x > 0. Thus, we
have obtained the desired conclusion. ��

Proof of Lemma 2 For n = 0, since z0(·) is strictly increasing on [0, 1/θ ] and by
construction, z0(μ0) = 0, we have z0(δ) < z0(μ0) = 0 for δ ∈ [0, μ0) and z0(δ) >

z0(μ0) = 0 for δ ∈ (μ0, 1/θ ]. Then, we just need to focus on n ≥ 1 in this proof.
From Lemma A2, we know for δ = −1/ζ , zn(δ) = 0 if and only if z̃n(δ) = 0,

where z̃n(·) is defined in Eq. (A.9). We first investigate the property of z̃n(·). From
(c) of Lemma A2, there exists δ̄ such that z̃′n(δ) > 0 for δ ∈ [0, δ̄) and z̃′n(δ) < 0 for
δ ∈ (δ̄, 1/θ ], so z̃n(·) is strictly increasing on [0, δ̄] and strictly decreasing on [δ̄, 1/θ ].
To better explain our proof, we illustrate the qualitative features of z̃n in Fig. 11.

From (a.1)–(a.3) of Lemma A2, z̃n(−1/ζ ) = 0, z̃n(0) < 0, z̃n(1/θ) < 0, and
z̃′′n(δ) < 0 for δ ∈ [0, 1/θ). There are three cases: (i) z̃′n(−1/ζ ) < 0; (ii) z̃′n(−1/ζ ) >

0; (iii) z̃′n(−1/ζ ) = 0. For Case (i), given the monotonicity property of z̃n , we must
have −1/ζ > δ̄. This case is illustrated in Panel (a) of Fig. 11. Since −1/ζ > δ̄,
z̃′n(δ) < 0 for δ ∈ [−1/ζ, 1/θ ]. From (a.1) of Lemma A2, z̃n(−1/ζ ) = 0, and since
z̃′n(δ) < 0 for δ ∈ [−1/ζ, 1/θ ], z̃n(δ) < 0 for δ ∈ (−1/ζ, 1/θ ]. Since z̃n(·) is
strictly decreasing on [δ̄,−1/ζ ] and z̃n(−1/ζ ) = 0, z̃n(δ) > 0 for δ ∈ [δ̄,−1/ζ ). In
particular, z̃n(δ̄) > 0. Since z̃n(·) is strictly increasing on [0, δ̄] and z̃n(0) < 0, by
the continuity of z̃n(·), there exists a unique root, denoted by μn , of z̃n(δ) = 0 on the
interval (0, δ̄), and z̃n(δ) > 0 for δ ∈ (μn, δ̄). In sum, if z̃′n(−1/ζ ) < 0, z̃n(δ) = 0
admits two roots, μn and (−1/ζ ), in [0, 1/θ ] such that 0 < μn < −1/ζ < 1/θ and
z̃n(δ) > 0 for δ ∈ (μn,−1/ζ ). For Case (ii), z̃′n(−1/ζ ) > 0, which is illustrated in
Panel (b) of Fig. 11. Symmetrically, we can show that if z̃′n(−1/ζ ) > 0, z̃n(δ) = 0
admits two roots, μn and (−1/ζ ), in [0, 1/θ ] such that 0 < −1/ζ < μn < 1/θ and
z̃n(δ) > 0 for δ ∈ (−1/ζ, μn). For Case (iii), z̃′n(−1/ζ ) = 0, which is illustrated in
Panel (c) of Fig. 11. In this case, δ̄ = −1/ζ , and thus, z̃n(δ) = 0 admits a unique root,
(−1/ζ ), and we let μn ≡ −1/ζ in this case.

From (b) of Lemma A2, z̃′n(−1/ζ ) = 0 if and only if zn(−1/ζ ) = 0. From
Lemma A2, we also know that if δ = −1/ζ , zn(δ) = 0 if and only if z̃n(δ) = 0. Thus,
if z̃′n(−1/ζ ) = 0, zn(−1/ζ ) = 0, so μn must be the unique root of zn(δ) = 0 on
[0, 1/θ ]. On the other hand, if z̃′n(−1/ζ ) = 0, zn(−1/ζ ) = 0, and −1/ζ(= μn) is
the unique root of zn(δ) = 0 on [0, 1/θ ]. Thus, zn(δ) = 0 on [0, 1/θ ] always admits
a unique root μn .

Next, we claim that zn(δ) < 0 for δ ∈ [0, μn). By construction, we know zn(0) =
−1/b < 0. Suppose there exists δ̂ ∈ (0, μn) such that zn(δ̂) ≥ 0. If zn(δ̂) = 0, then it
contradicts toμn being the unique root, so zn(δ̂) > 0. Since zn(0) = −1/b < 0, by the
continuity of zn(·) on [0, 1/θ ], there exists a root in (0, δ̂) of the equation zn(δ) = 0.
It again contradicts to μn being the unique root, thus establishing our claim.
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Fig. 11 Properties of z̃n

Last, we claim that zn(δ) > 0 for δ ∈ (μn, 1/θ ]. There are two possible cases: (a)
μn < −1/ζ and (b)μn ≥ −1/ζ . For (a), pick δ′ in (μn,−1/ζ ). We have shown above
that z̃n(δ′) > 0 for δ′ ∈ (μn,−1/ζ ). Since δ′ < −1/ζ and ζ < 0 (for aI > aC ),
(1+δ′ζ ) > 0. Since z̃n(δ′) > 0, (1+δ′ζ ) > 0, aI > aC , δ′ = −1/ζ , fromLemmasA1
and A2, we have

zn(δ
′) = z̃n(δ′)

aCb(1 − δ(1 − d))(aI − aC )(1 + δ′ζ )
> 0.

Suppose on the contrary, there exists δ′′ ∈ (μn, 1/θ ] such that zn(δ′′) ≤ 0. If zn(δ′′) =
0, it contradicts with μn being the unique root. If zn(δ′′) < 0, since zn(δ′) > 0,
by the continuity of zn on [0, 1/θ ], there exists another root in (μn, 1/θ), leading
to a contradiction. Thus, we must have zn(δ) > 0 for δ ∈ (μn, 1/θ ]. For (b), since
μn ≥ −1/ζ , from the discussion above we know z̃n(δ) < 0 for any δ in (μn, 1/θ ].
For δ > μn ≥ −1/ζ , (1 + δζ ) < 0 and since z̃n(δ) < 0, from Lemmas A1 and A2,
we have zn(δ) > 0 for δ ∈ (μn, 1/θ ], thus establishing the claim.

We have now obtained the desired conclusion. ��
Proof of Lemma 3 From (A.8) in Lemma A1 stated below, if δ = −1/ζ , or equiva-
lently, −δζ = 1, then

zn(δ) = −nbaC (1 − d)δ + nbaC − baI + 2baC
aCb(1 − δ(1 − d))(aI − aC )ζ

Then, for n > 1, we have

zn(δ) − zn−1(δ) = baC (1 − (1 − d)δ)

aCb(1 − δ(1 − d))(aI − aC )ζ
< 0,

where the inequality follows from δ(1− d) < 1, aI > aC , and ζ < 0. For δ = −1/ζ ,
from (A.8), we can write zn(δ) as

zn(δ) = baI (−ζ )n(1 − θδ)δn+1 − aC (aI − aC )(1 − (1 − d)δ)2

aCb(1 − δ(1 − d))(aI − aC )(1 + δζ )
.
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Then, for n > 1, we have

zn(δ) − zn−1(δ) = baI (−ζ )n−1(1 − θδ)δn(−δζ − 1)

aCb(1 − δ(1 − d))(aI − aC )(1 + δζ )

= − baI (−ζ )n−1(1 − θδ)δn

aCb(1 − δ(1 − d))(aI − aC )
< 0,

where the inequality follows from −ζ > 0, δ < 1/θ , δ(1 − d) < 1, and aI > aC .

Thus, we have shown that zn(δ) < zn−1(δ) for any n > 1. Last,

z1(δ) − z0(δ) = δ

(
− 1

aI − aC
− δζ

aC (1 − δ(1 − d))

)
− δ

aC (1 − δ(1 − d))

= −δ · aC (1 − δ(1 − d)) + (1 + δζ )(aI − aC )

aC (1 − δ(1 − d))(aI − aC )

= −δ · aI − aI δ(1 − d) − bδ

aC (1 − δ(1 − d))(aI − aC )

= − δaI (1 − δθ)

aC (1 − δ(1 − d))(aI − aC )
< 0,

where the inequality follows from δθ < 1 and aI > aC . Thus, we have obtained the
desired conclusion. ��
Proof of Proposition 2 From Lemma 2, there is a unique root of zn(δ) = 0 on the
interval (0, 1/θ). Denote this root by μn . Consider the sequence {μn}∞n=0. We now
want to establish the monotonicity and the limit of this sequence. In particular, we
want to show that the sequence {μn}∞n=0 satisfies (i) μn > μn−1 for any n ∈ N and
(ii) limn→∞ μn = 1/θ.

To gain some intuition, we illustrate the determination ofμn in Fig. 12. Let vn(δ) ≡
baI (−ζ )n(1 − θδ)δn+1 and w(δ) ≡ aC (aI − aC )(1 − (1 − d)δ)2. Then, z̃n(·), as
defined in (A.9), can be written as z̃n(δ) = vn(δ) − w(δ), so z̃(δ) = 0 if and only if
vn(δ) = w(δ). It is straightforward to show that w(·) is strictly decreasing and vn(·) is
first strictly increasing and then strictly decreasingon [0, 1/θ ].The twocurves intersect
with each other twice provided that μn = −1/ζ. One of the points of intersection
always corresponds to δ = −1/ζ. The left panel shows how the curve of vn(·) changes
with n for μn < −1/ζ while the right panel illustrates the case of μn > −1/ζ. As n
increases, the red curve shifts to the right, thus leading to μn+1 > μn .

To establish the monotonicity formally, from Lemma 2, we know for any n ∈ N,

zn(δ) < 0 for δ ∈ [0, μn) and zn(δ) > 0 for δ ∈ (μn, 1/θ ]. FromLemma 3, zn−1(δ) >

zn(δ) for any δ ∈ (0, 1/θ). In particular, zn−1(δ) > zn(δ) for δ ∈ (μn, 1/θ), and by
the continuity of zn(·) and zn−1(·), we must also have zn−1(1/θ) ≥ zn(1/θ). Then
for δ ∈ (μn, 1/θ ], zn−1(δ) ≥ zn(δ) > 0. Further, zn−1(μn) > zn(μn) = 0. Thus,
zn−1(δ) > 0 for δ ∈ [μn, 1/θ ], so μn−1, defined as the unique root of the equation
zn−1(δ) = 0 for δ ∈ [0, 1/θ ], has to be in (0, μn), which implies μn−1 < μn .

We have now obtained the monotonic property of {μn}∞n=0. The next is to show
that limn→∞ μn = 1/θ. We first note that, by construction, μn < 1/θ for any n ∈ N.
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Fig. 12 Monotonicity of μn

Thus, the sequence {μn}∞n=0 is bounded above by 1/θ and monotonic, so it must have
a limit and limn→∞ μn ≤ 1/θ. Since we have

zn

(
−1

ζ

)
= −1

b
− 1

ζ
·
(

−
∑n−1

i=0 (−(−1/ζ )ζ )i

aI − aC
+ (−(−1/ζ )ζ )n

aC (1 + (1 − d)/ζ )

)

= −1

b
− 1

aC (ζ + 1 − d)
+ n

ζ(aI − aC )
,

zn(−1/ζ ) is linear in n. Since ζ < 0 (for aI > aC ), zn(−1/ζ ) is strictly decreasing
in n. Thus, there exists n0 ∈ N such that for any n > n0, zn(−1/ζ ) < 0, and by
Lemma 2, it implies μn > −1/ζ. From Lemma A2, for any n > n0, we have

z̃n(μn) = baI (−ζ )n(1 − θμn)μ
n+1
n − aC (aI − aC )(1 − (1 − d)μn)

2 = 0

⇔ lim
n→∞ baI (−ζ )n(1 − θμn)μ

n+1
n − aC (aI − aC )(1 − (1 − d)μn)

2 = 0

⇔ lim
n→∞ baI (−ζ )n(1−θμn)μ

n+1
n = lim

n→∞ aC (aI −aC )(1−(1−d)μn)
2 < ∞,

where the second line follows from z̃n(μn) = 0 for any n > n0 and the third
line follows from the fact that {μn}∞n=0 has a limit and limn→∞ ≤ 1/θ. Suppose
limn→∞ μn < 1/θ. Since μn > −1/ζ for n > n0 and {μn}∞n=0 is strictly increasing,
then

lim
n→∞ baI (−ζ )n(1 − θμn)μ

n+1
n ≥ lim

n→∞ baI (1 − θ lim
n→∞ μn) · (−ζ )nμn+1

n0+1 = ∞,

where the last equality follows from limn→∞ μn < 1/θ and μn0+1 > −1/ζ , leading
to a contradiction. Thus, we must have limn→∞ μn = 1/θ.

We have now obtained the desired conclusion. ��
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Proof of Lemma 4 We first consider the case of ζ = −1. Since ζ = −1, b/(aC −aI )+
d = 0 or equivalently, b + (aC − aI )d = 0. Further, we have

aCb

b + d(aC − aI )
= aC (ζ + 1 − d)

ζ + 1
and

aCb

aC − aI
= aC (ζ + 1 − d).

Since by construction, xn = −(xn−1 − aCb/(aC − aI ))/ζ , for any n ∈ N, we have

xn − aCb

b + d(aC − aI )
= −1

ζ

(
xn−1 − aCb

aC − aI

)
− aCb

b + d(aC − aI )

= −1

ζ
(xn−1 − aC (ζ + 1 − d)) − aC (ζ + 1 − d)

ζ + 1

= −1

ζ

(
xn−1 − aC (ζ + 1 − d)

ζ + 1

)

= −1

ζ

(
xn−1 − aCb

b + d(aC − aI )

)

= 1

(−ζ )n

(
x0 − aCb

b + d(aC − aI )

)

= − daC (aI − aC )

(b + d(aC − aI ))(−ζ )n
, (A.5)

where the last equality follows from x0 = aC . Since aI > aC , ζ < 0, and we consider
ζ = −1, so there are two cases: (i) ζ < −1 and (ii) 0 > ζ > −1. For (i), since
ζ < −1, (1 + ζ ) < 0. Since aI > aC and ζ < −1, b + d(aC − aI ) > 0. Thus,
(1+ ζ )/(b+ d(aC − aI )) < 0. For (ii), since ζ > −1, 1+ ζ > 0. Since ζ > −1 and
aI > aC , b + d(aC − aI ) < 0. Again, we have (1 + ζ )/(b + d(aC − aI )) < 0. For
both cases, we then have

xn − xn−1 = (xn − aCb

b + d(aC − aI )
) − (xn−1 − aCb

b + d(aC − aI )
)

= − daC (aI − aC )

(b + d(aC − aI ))(−ζ )n
+ daC (aI − aC )

(b + d(aC − aI ))(−ζ )n−1

= − daC (aI − aC )(1 + ζ )

(b + d(aC − aI ))(−ζ )n
> 0,

where the inequality follows from aI > aC , ζ < 0 and (1+ ζ )/(b+ d(aC − aI )) < 0
for both cases. Thus, xn > xn−1 for any n ∈ N and ζ = −1. For ζ = −1, xn =
xn−1 + aCb/(aI − aC ). Since aI > aC , xn strictly increases with n.

Moreover, since aI > aC > 0, −ζ > θ . Then, for θ ≥ 1, ζ < −θ ≤ −1, and from
(A.5), this implies limn→∞ xn = aCb

b+d(aC−aI )
. For θ > 1, x̂ = aCb

b+d(aC−aI )
, so we have

limn→∞ xn = x̂ . For θ = 1, b/aI = d, and thus, limn→∞ xn = aI . We have then
obtained the desired conclusion. ��
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Proof of Proposition 3 We adopt the standard guess-and-verify approach. Let μn−1 <

δ < μn for some n ∈ N. Consider the following candidate policy function

ḡ(x) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − d)x for x ∈ (0, aC ]
−ζ x + aCb

aC−aI
for x ∈ (aC , xn]

xn−1 for x ∈ (xn,
xn−1
1−d ]

(1 − d)x for x ∈ (
xn−1
1−d ,∞)

,

where x0 = aC and from Lemma A3, xn = x̂ − (x̂ − aC )/(−ζ )n (for θ = 1, let
x̂ = aCb/(b+d(aC −aI )) = aI ). To see that ḡ(·) is well defined, we need to verify (a)
aC < xn , (b) xn < xn−1/(1−d), and (c) (x, ḡ(x)) ∈ � for any x > 0. Since aC < aI ,
from Lemma 4, xn > xn−1. Since x0 = aC , xn > x0 = aC , for any n ∈ N. Then, (a) is
verified. Since xn > aC andaC < aI , (ζ+1−d)xn = bxn/(aC−aI ) < aCb/(aC−aI ),
or equivalently, xn < (aCb/(aC − aI ) − ζ xn)/(1 − d) = xn−1/(1 − d), where the
equality follows from the construction of the sequence {xn}∞n=0. Then, (b) is verified.
For x ∈ (0, aC ] ∪ (xn−1/(1 − d),∞), (x, (1 − d)x) ∈ �. Since aC < aI and
θ ≥ 1, ζ < −θ ≤ −1. Since ζ < −1, xn = x̂ − (x̂ − aC )/(−ζ )n , and x̂ > aC
(from aC < aI and θ ≥ 1), we have xn < x̂ . We have shown xn > aC , and from
aC < aI and θ ≥ 1, x̂ ≤ aI , so aC < xn < x̂ ≤ aI . Since aC < xn < aI ,
(x,−ζ x + aCb/(aC − aI )) = (x, x̂ + ζ(x̂ − x)) ∈ � for any x ∈ (aC , xn]. For
x ∈ (xn, xn−1/(1− d)], x ≤ xn−1/(1− d). Then, (1− d)x ≤ xn−1. Since θ ≥ 1 and
xn−1 < xn , θx ≥ x > xn > xn−1. Further, if x > aI , (1−d)x +b ≥ (1−d)aI +b =
θaI ≥ aI > xn > xn−1. Since θx ≤ (1 − d)x + b if and only if x ≤ aI , we have
shown that (1−d)x ≤ xn−1 < min{θx, (1−d)x+b} for any x ∈ (xn, xn−1/(1−d)].
Then, (c) is verified. Based on the policy function ḡ(·), we postulate the following
value function

W (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
aC (1−δ(1−d))

for x ∈ [0, aC ](
−

∑m−1
i=0 (−δζ )i

aI−aC
+ (−δζ )m

aC (1−δ(1−d))

)
(x − x̂) for x ∈ (xm−1, xm],

+ (1−δm)(aI−x̂)
(1−δ)(aI−aC )

+ δm x̂
aC (1−δ(1−d))

m = 1, 2, . . . , n
1−d
b x + b−xn−1

b +
∑n

i=1 δi (aI−xn−i )

aI−aC

+ δn+1(1−d)aC
1−δ(1−d)

for x ∈ (xn,
xn−1
1−d ]

δ


(
−

∑n−1
i=0 (−δζ )i

aI−aC
+ (−δζ )n

aC (1−δ(1−d))

)

((1 − d)
x − x̂) for x ∈
(

xn−1
(1−d)


, xn
(1−d)


]
+ 1−δ


1−δ
+ δ


(
(1−δn)(aI−x̂)
(1−δ)(aI−aC )

+ δn x̂
aC (1−δ(1−d))

)

 = 1, 2, . . .

δ
(1−d)
+1

b x + 1−δ


1−δ
+ δ


(
b−xn−1

b for x ∈ ( xn
(1−d)


,
xn−1

(1−d)
+1 ]
+

∑n
i=1 δi (aI−xn−i )

aI−aC
+ δn+1(1−d)aC

1−δ(1−d)

)

 = 1, 2, . . .
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Before we verify thatW (·) satisfies the value function, we first show howwe obtain
the postulated value function. For x ∈ (0, aC ],

W (x) =
∞∑
i=0

δi u((1 − d)i x, (1 − d)i+1x) =
∞∑
i=0

δi
(1 − d)i x

aC
= x

aC (1 − δ(1 − d))
.

For x ∈ (xm−1, xm] with m ∈ {1, 2, . . . , n}, let f̄ (x) = −ζ x + aCb/(aC − aI ) =
ζ(x̂ − x) + x̂ . Then, we have

W (x) =
m−1∑
i=0

δi u( f̄ i (x), f̄ i+1(x)) + δmW ( f̄ m(x))

=
m−1∑
i=0

δi
aI − f̄ i (x)

aI − aC
+ δm f̄ m(x)

aC (1 − δ(1 − d))

=
m−1∑
i=0

δi
aI − x̂ + (−ζ )i (x̂ − x)

aI − aC
+ δm[x̂ − (−ζ )m(x̂ − x)]

aC (1 − δ(1 − d))

=
(

−
∑m−1

i=0 (−δζ )i

aI − aC
+ (−δζ )m

aC (1 − δ(1 − d))

)
(x − x̂)

+ (1 − δm)(aI − x̂)

(1 − δ)(aI − aC )
+ δm x̂

aC (1 − δ(1 − d))

where the first equation follows from ḡi (x) = f̄ i (x) ∈ (xm−i−1, xm−i ] for i =
0, 1, . . . ,m − 1, the second equation follows from

u( f̄ i (x), f̄ i+1(x)) = u( f̄ i (x), ζ(x̂ − f̄ i (x)) + x̂)

= (1 − d)

b
f̄ i (x) − ζ(x̂ − f̄ i (x)) + x̂

b
+ 1 = (aI − f̄ i (x))

(aI − aC )
,

and the third equation follows from f̄ i (x) = x̂ − (−ζ )i (x̂ − x). It should be noted
that −ζ > θ , so we cannot rule out the possibility of (−δζ ) = 1.

For x ∈ (xn, xn−1/(1 − d)], since (1 − d)x0 = (1 − d)aC = −ζaC +
aCb/(aC − aI ) = −ζ x0 + aCb/(aC − aI ), u(aC , (1− d)aC ) = u( f̄ n−1(xn−1), (1−
d) f̄ n−1(xn−1)) = u( f̄ n−1(xn−1), f̄ n(xn−1)), and we have

W (x) = u(x, xn−1) +
n∑

i=1

δi u( f̄ i−1(xn−1), f̄ i (xn−1)) + δn+1W ( f̄ n(xn−1))

= 1 − d

b
x − xn−1

b
+ 1 +

n∑
i=1

δi
aI − f̄ i−1(xn−1)

aI − aC
+ δn+1 f̄ n(xn−1)

aC (1 − δ(1 − d))

= 1 − d

b
x + b − xn−1

b
+

∑n
i=1 δi (aI − xn−i )

aI − aC
+ δn+1(1 − d)aC

1 − δ(1 − d)
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where the first equation follows from ḡi (x) = f̄ i−1(xn−1) = xn−i for i = 1, . . . , n;
the second equation follows from xn−1 = ζ(x̂ − xn) + x̂ < ζ(x̂ − x) + x̂ for x ∈
(xn, xn−1/(1 − d)], u( f̄ i−1(xn−1), f̄ i (xn−1)) = u( f̄ i−1(xn−1), f̄ ( f̄ i−1(xn−1))) =
(aI − f̄ i−1(xn−1))/(aI − aC ), and f̄ n(xn−1) = (1 − d)aC < aC ; the third equation
follows from f̄ i−1(xn−1) = xn−i and f̄ n(xn−1) = f̄ (x0) = (1 − d)aC .

For x ∈
(

xn−1
(1−d)


, xn
(1−d)


]
with 
 ∈ N, we have

W (x) =

−1∑
i=0

δi + δ
W ((1 − d)
x)

= 1 − δ


1 − δ
+ δ


[(
−

∑n−1
i=0 (−δζ )i

aI − aC
+ (−δζ )n

aC (1 − δ(1 − d))

)
((1 − d)
x − x̂)

+ (1 − δn)(aI − x̂)

(1 − δ)(aI − aC )
+ δn x̂

aC (1 − δ(1 − d))

]

= δ


(
−

∑n−1
i=0 (−δζ )i

aI − aC
+ (−δζ )n

aC (1 − δ(1 − d))

)
((1 − d)
x − x̂)

+1 − δ


1 − δ
+ δ


(
(1 − δn)(aI − x̂)

(1 − δ)(aI − aC )
+ δn x̂

aC (1 − δ(1 − d))

)
,

where the first equation follows from ḡi (x) > xn−1/(1 − d) for i = 0, 1, . . . , 
 − 1
and the second equation follows from (1 − d)
x ∈ (xn−1, xn].

For x ∈ ( xn
(1−d)


,
xn−1

(1−d)
+1 ] with 
 ∈ N,

W (x) =

−1∑
i=0

δi + δ
W ((1 − d)
x)

= 1 − δ


1 − δ
+ δ


[
1 − d

b
(1 − d)
x + b − xn−1

b
+

∑n
i=1 δi (aI − xn−i )

aI − aC

+δn+1(1 − d)aC
1 − δ(1 − d)

]

= δ
(1 − d)
+1

b
x + 1 − δ


1 − δ

+δ


(
b − xn−1

b
+

∑n
i=1 δi (aI − xn−i )

aI − aC
+ δn+1(1 − d)aC

1 − δ(1 − d)

)
,

where the first inequality follows from ḡi (x) > xn−1/(1− d) for i = 0, 1, . . . , 
 − 1
and the second inequality follows from (1 − d)
x ∈ (xn, xn−1/(1 − d)].

We now turn to the verification of whetherW (·) satisfies the Bellman equation. For
x ∈ (0, aC ], (x, x ′) ∈ � implies that x ′ ≥ ζ(x̂ − x) + x̂ . Using the reduced-form
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utility function (3), we have

W0(x, x
′) ≡ u(x, x ′) + δW (x ′) = aI θ

aCb
x − aI

aCb
x ′ + δW (x ′).

For x ′ ∈ (0, aC ],

∂W0(x, x ′)
∂x ′ = − aI

aCb
+ δ

aC (1 − δ(1 − d))
= aI (δθ − 1)

aCb(1 − δ(1 − d))
< 0,

where the inequality follows from δθ < 1. For x ′ ∈ (xm−1, xm] for some m ∈
{1, 2, . . . , n},

∂W0(x, x ′)
∂x ′ = − aI

aCb
+ δ

(
−

∑m−1
i=0 (−δζ )i

aI − aC
+ (−δζ )m

aC (1 − δ(1 − d))

)

= − aI
aCb

+ δ

(
1

b
+ zm(δ)

)
≤ − aI

aCb
+ δ

(
1

b
+ z1(δ)

)

= − aI
aCb

+ δ

(
− 1

aI − aC
− ζ δ

aC (1 − δ(1 − d))

)

< − aI
aCb

+ δ

aC (1 − δ(1 − d))
= aI (δθ − 1)

aCb(1 − δ(1 − d))
< 0,

where the first inequality follows from Lemma 3, the second inequality follows from
δθ < 1 and Lemma A4, and the third inequality follows from δθ < 1. For x ′ ∈
(xn, xn−1/(1 − d)], we have

∂W0(x, x ′)
∂x ′ = − aI

aCb
+ (1 − d)δ

b
< 0,

where the inequality follows from aI > aC and (1 − d)δ < 1. For x ′ ∈(
xn−1

(1−d)

, xn

(1−d)


]
with 
 ∈ N, then

∂W0(x, x ′)
∂x ′ = − aI

aCb
+ δ
+1(1 − d)


(
−

∑n−1
i=0 (−δζ )i

aI − aC
+ (−δζ )n

aC (1 − δ(1 − d))

)
,

≤ − aI
aCb

+ δ
+1(1 − d)

(

− 1

aI − aC
− ζ δ

aC (1 − δ(1 − d))

)

≤ − aI
aCb

+ δ

(
− 1

aI − aC
− ζ δ

aC (1 − δ(1 − d))

)
< 0,

where the first inequality follows from Lemma 3, the second inequality follows from
δ(1 − d) < 1, and third inequality follows from δθ < 1 and Lemma A4. If x ′ ∈
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( xn
(1−d)


,
xn−1

(1−d)
+1 ] with 
 ∈ N, then

∂W0(x, x ′)
∂x ′ = − aI

aCb
+ (1 − d)
+1δ
+1

b
< 0,

where the inequality follows from aI > aC and (1 − d)δ < 1. Thus, for any x ′,
W0(x, x ′) strictly decreases with x ′, soW0(x, x ′) attains its maximum when x ′ attains
its minimum: x ′ = (1 − d)x .

In what follows, for any (x, x ′) ∈ � such that x ′ ≥ ζ(x̂ − x) + x̂ , following the
same argument as in the case of x ≤ aC above, we can show that W0(x, x ′) strictly
decreases with x ′, so W0(x, x ′) attains its maximum only if x ′ ≤ ζ(x̂ − x) + x̂ . We
thus focus on x ′ ≥ ζ(x̂ − x) + x̂ for x > aC . Using the reduced-form utility function,
we have

W0(x, x
′) ≡ u(x, x ′) + δW (x ′) = 1 − d

b
x − 1

b
x ′ + 1 + δW (x ′).

Consider x ∈ (xm−1, xm]withm ∈ {1, 2, . . . , n}. Since ζ < 0, x ′ ≤ ζ(x̂−x)+ x̂ ≤
ζ(x̂ − xm) + x̂ = xm−1, where the last equality follows from the construction of xm .
If x ′ < aC , then

∂W0(x, x ′)
∂x ′ = −1

b
+ δ

aC (1 − δ(1 − d))
> 0,

where the inequality follows from (aC (1− d)+ b)δ > aC , or equivalently, δ > μ0 =
1/(b/aC + (1 − d)). If x ′ ∈ (xm′−1, xm′ ] for some m′ ∈ N and m′ ≤ m − 1, then

∂W0(x, x ′)
∂x ′ = −1

b
+ δ

(
−

∑m′−1
i=0 (−δζ )i

aI − aC
+ (−δζ )m

′

aC (1 − δ(1 − d))

)
= zm′(δ) > 0,

where the inequality follows from m′ ≤ m − 1 ≤ n − 1, δ > μn−1 ≥ μm′ (from
Lemma 2), and zm′(δ) > 0 for δ > μm′ (from Lemma 2). Thus, for any x ′ ≤ ζ(x̂ −
x) + x̂ , W0(x, x ′) strictly increases with x ′ and for any x ′ ≥ ζ(x̂ − x) + x̂ , W0(x, x ′)
strictly decreases with x ′, soW0(x, x ′) attains its maximum when x ′ = ζ(x̂ − x)+ x̂ .

Consider x ∈ (xn, xn−1/(1 − d)]. For x ′ ∈ (0, aC ], following the argument for
x ∈ (xm−1, xm] with m ∈ {1, 2, . . . , n}, we can show that W0(x, x ′) strictly increases
with x ′. For x ′ ∈ (xm−1, xm] for some m ∈ {1, 2, . . . , n},

∂W0(x, x ′)
∂x ′ =−1

b
+δ

(
−

∑m−1
i=0 (−δζ )i

aI − aC
+ (−δζ )m

aC (1 − δ(1 − d))

)
= zm(δ).

(A.6)

Since μn−1 < δ < μn , from Lemma 2, μm ≤ μn−1 < δ form = 1, 2, . . . , n−1, and
μm = μn > δ for m = n. From Lemma 2, zm(δ) > 0 for m = 1, 2, . . . , n − 1, and
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zm(δ) < 0 for m = n. Thus, W0(x, x ′) strictly increases with x ′ for x ′ ∈ (x0, xn−1]
and strictly decreases with x ′ for x ′ ∈ (xn−1, xn]. For x ′ ∈ (xn, xn−1/(1 − d)],

∂W0(x, x ′)
∂x ′ = −1

b
+ δ(1 − d)

b
< 0,

which follows from δ(1 − d) < 1. For x ′ ∈
(

xn−1
(1−d)


, xn
(1−d)


]
for 
 ∈ N, then

∂W0(x, x ′)
∂x ′ = −1

b
+ δ
+1(1 − d)


(
−

∑n−1
i=0 (−δζ )i

aI − aC
+ (−δζ )n

aC (1 − δ(1 − d))

)

= −1

b
+ δ
+1(1 − d)


(
zn(δ) + 1

b

)
< −1

b
+ δ
+1(1 − d)


b
< 0,

where the first inequality follows from δ < μn and zn(δ) < 0 (from Lemma 2) and the
second inequality follows from δ(1 − d) < 1. For x ′ ∈ ( xn

(1−d)

,

xn−1
(1−d)
+1 ] for 
 ∈ N,

again, we have

∂W0(x, x ′)
∂x ′ = −1

b
+ δ
+1(1 − d)


b
< 0.

Thus,we have shown thatW0(x, x ′) strictly increaseswith x ′ for x ′ < xn−1 and strictly
decreases with x ′ for x ′ > xn−1, so W0(x, x ′) attains its maximum when x ′ = xn−1.

Consider x > xn−1/(1 − d) with x ′ ≤ ζ(x̂ − x) + x̂ . Since x ′ ≥ (1 − d)x >

xn−1, following the argument for x ∈ (xn,
xn−1
1−d ], we can show that W0(x, x ′) strictly

decreases with x ′ for x ′ > xn−1. Thus, W0(x, x ′) attains its maximum when x ′ =
(1 − d)x .

We have now shown that for every x > 0, W0(x, x ′) = u(x, x ′) + δW (x ′) is
maximized for x ′ = ḡ(x). SinceW (·) is constructed from the policy function ḡ(·), we
have W (x) = u(x, ḡ(x)) + δW (ḡ(x)) for every x > 0. So W (·) satisfies the Bellman
equation and ḡ(x) is the corresponding optimal policy. Thus, we have obtained the
desired conclusion. ��
Proof of Proposition 4 Let d = 1. Let μn−1 < δ < μn for some n ∈ N. We postulate
the following value function

W (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x
aC

for x ∈ [0, aC ](
−

∑m−1
i=0 (−δζ )i

aI−aC
+ (−δζ )m

aC

)
(x − x̂) for x ∈ (xm−1, xm],

+ (1−δm )(aI−x̂)
(1−δ)(aI−aC )

+ δm x̂
aC

m = 1, 2, . . . , n
b−xn−1

b +
∑n

i=1 δi (aI−xn−i )

aI−aC
for x ∈ (xn,∞)

.

The verification of W (·) satisfying the Bellman equation follows closely the proof of
Proposition 3. For x ∈ (0, aC ], (x, x ′) ∈ � implies that x ′ ≥ ζ(x̂ − x) + x̂ . Using the
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reduced-form utility function, we have

W0(x, x
′) ≡ u(x, x ′) + δW (x ′) = aI θ

aCb
x − aI

aCb
x ′ + δW (x ′).

For x ′ ∈ (0, aC ],
∂W0(x, x ′)

∂x ′ = − aI
aCb

+ δ

aC
= aI (δθ − 1)

aCb
< 0,

where the inequality follows from θ = b/aI for d = 1 and δθ < 1. For x ′ ∈
(xm−1, xm] for some m ∈ {1, 2, . . . , n},

∂W0(x, x ′)
∂x ′ = − aI

aCb
+ δ

(
−

∑m−1
i=0 (−δζ )i

aI − aC
+ (−δζ )m

aC

)

≤ − aI
aCb

+ δ

(
− 1

aI − aC
− ζ δ

aC

)

< − aI
aCb

+ δ

aC
= aI (δθ − 1)

aCb
< 0,

where the first inequality follows from Lemma 3, the second inequality follows from
δθ < 1 and LemmaA4with d = 1, the third inequality follows from δθ < 1. For x ′ >

xn , we have ∂W0(x, x ′)/∂x ′ = −aI /(aCb) < 0. Thus, for any x ′, W0(x, x ′) strictly
decreases with x ′, soW0(x, x ′) attains itsmaximumwhen x ′ attains itsminimum: x ′ =
(1 − d)x = 0 for x ∈ (0, aC ]. In what follows, similar to the proof of Proposition 3,
we focus on x ′ ≥ ζ(x̂ − x) + x̂ for x > aC . Using the reduced-form utility function,
we have

W0(x, x
′) ≡ u(x, x ′) + δW (x ′) = −1

b
x ′ + 1 + δW (x ′).

Consider x ∈ (xm−1, xm]withm ∈ {1, 2, . . . , n}. Since ζ < 0, x ′ ≤ ζ(x̂−x)+ x̂ ≤
ζ(x̂ − xm) + x̂ = xm−1, where the last equality follows from the construction of xm .
If x ′ < aC , then,

∂W0(x, x ′)
∂x ′ = −1

b
+ δ

aC
> 0,

where the inequality follows from bδ > aC , or equivalently, δ > μ0 = 1/(b/aC )with
d = 1. If x ′ ∈ (xm′−1, xm′ ] for some m′ ∈ N and m′ ≤ m − 1, then

∂W0(x, x ′)
∂x ′ = −1

b
+ δ

(
−

∑m′−1
i=0 (−δζ )i

aI − aC
+ (−δζ )m

′

aC

)
= zm′(δ) > 0,

where the inequality follows from m′ ≤ m − 1 ≤ n − 1, δ > μn−1 ≥ μm′ (from
Lemma 2), and zm′(δ) > 0 for δ > μm′ (from Lemma 2). Thus, for any x ′ ≤ ζ(x̂ −
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x) + x̂ , W0(x, x ′) strictly increases with x ′ and for any x ′ ≥ ζ(x̂ − x) + x̂ , W0(x, x ′)
strictly decreases with x ′, soW0(x, x ′) attains its maximum when x ′ = ζ(x̂ − x)+ x̂ .

Consider x > xn . For x ′ ∈ (0, aC ], following the argument for the previous case,
we can show that W0(x, x ′) strictly increases with x ′. For x ′ ∈ (xm−1, xm] for some
m ∈ {1, 2, . . . , n},

∂W0(x, x ′)
∂x ′ = −1

b
+ δ

(
−

∑m−1
i=0 (−δζ )i

aI − aC
+ (−δζ )m

aC

)
= zm(δ). (A.7)

Since μn−1 < δ < μn , from Lemma 2, μm ≤ μn−1 < δ form = 1, 2, . . . , n−1, and
μm = μn > δ for m = n. From Lemma 2, zm(δ) > 0 for m = 1, 2, . . . , n − 1, and
zm(δ) < 0 for m = n. Thus, W0(x, x ′) strictly increases with x ′ for x0 < x ′ ≤ xn−1
and strictly decreaseswith x ′ for x ′ ∈ (xn−1, xn].For x ′ ∈ (xn,∞), ∂W0(x, x ′)/∂x ′ =
−1/b < 0.Thus,we have shown thatW0(x, x ′) strictly increaseswith x ′ for x ′ < xn−1
and strictly decreases with x ′ for x ′ > xn−1, so W0(x, x ′) attains its maximum when
x ′ = xn−1. Note that for d = 1 and x > xn , (x, xn−1) is always in �.

Last, we verify that the postulated value function is indeed consistent with the
derived optimal policy function. For x ∈ (0, aC ], W (x) = x/aC = u(x, 0) + δW (0).
For x ∈ (x0, x1] = (aC , x1],

W (x) =
(

− 1

aI − aC
− δζ

aC

)
(x − x̂) + (1 − δ)(aI − x̂)

(1 − δ)(aI − aC )
+ δ x̂

aC

= aI − x

aI − aC
+ δ(ζ(x̂ − x) + x̂)

aC
= u(x, ζ(x̂ − x) + x̂) + δW (ζ(x̂ − x) + x̂),

where the last equality follows from the reduced-form utility function and (ζ(x̂− x)+
x̂) ∈ (0, aC ] for x ∈ (x0, x1]. For x ∈ (xm−1, xm] with m ∈ {2, 3, . . . , n},

W (x) =
(

−
∑m−1

i=0 (−δζ )i

aI − aC
+ (−δζ )m

aC

)
(x − x̂) + (1 − δm)(aI − x̂)

(1 − δ)(aI − aC )
+ δm x̂

aC

=
(

−1 + ∑m−1
i=1 (−δζ )i

aI − aC
+ (−δζ )m

aC

)
(x − x̂) + (1 − δ + δ − δm)(aI − x̂)

(1 − δ)(aI − aC )

+δm x̂

aC
= aI − x

aI − aC
+

(
−

∑m−1
i=1 (−δζ )i

aI − aC
+ (−δζ )m

aC

)
(x − x̂)

+ (δ − δm)(aI − x̂)

(1 − δ)(aI − aC )
+ δm x̂

aC

= aI − x

aI − aC
+ δ

[(
−

∑m−2
i=0 (−δζ )i

aI − aC
+ (−δζ )m−1

aC

)
(ζ(x̂ − x) + x̂ − x̂)
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+ (1 − δm−1)(aI − x̂)

(1 − δ)(aI − aC )
+ δm−1 x̂

aC

]

= u(x, ζ(x̂ − x) + x̂) + δW (ζ(x̂ − x) + x̂),

where the last equality follows from the (ζ(x̂ − x) + x̂) ∈ (xm−2, xm−1] for x ∈
(xm−1, xm] with m ∈ {2, 3, . . . , n}. For x > xn with n = 1, we have

W (x) = b − xn−1

b
+

∑1
i=1 δi (aI − xn−i )

aI − aC
= u(x, xn−1) + δ = u(x, xn−1) + δW (xn−1),

where the last equality follows from xn−1 = x0 = aC for n = 1 and W (aC ) = 1. For
x > xn with n > 1, we have

W (x) = b − xn−1

b
+

∑n
i=1 δi (aI − xn−i )

aI − aC

= u(x, xn−1) + δ

(∑n−2
i=0 δi (aI − xn−i−1)

aI − aC
+ δn−1

)

= u(x, xn−1) + δ

(∑n−2
i=0 δi [aI − x̂ + (−ζ )i (x̂ − xn−1)]

aI − aC

+δn−1(aC − x̂)

aC
+ δn−1 x̂

aC

)

= u(x, xn−1) + δ

((
−

∑n−2
i=0 (−δζ )i

aI − aC
+ (−δζ )n−1

aC

)
(xn−1 − x̂)

+ (1 − δn−1)(aI − x̂)

(1 − δ)(aI − aC )
+ δn−1 x̂

aC

)

= u(x, xn−1) + δW (xn−1).

Thus, we have shown that W (·) satisfies the Bellman equation and the optimal policy
is given by

g(x) =
⎧⎨
⎩
0 for x ∈ (0, aC ]
−ζ x + aCb

aC−aI
for x ∈ (aC , xn]

xn−1 for x ∈ (xn,∞)

.

��
Proof of Propositions 6 and 7 There are two possible cases: (i)μ0 ≥ 1 and (ii)μ0 < 1.
For (i), since μ0 > 1, we always have δ < 1 ≤ μ0. Then Theorem 2 applies. For (ii),
from Lemma A5, we know there exists a unique n0 ∈ N such that μn0−1 < 1 ≤ μn0
and xn0 < aI . Since xn0 < aI , the optimal policy functions stated in the propositions
are properly defined for δ ∈ (μn0−1, 1) ⊂ (μn0−1, μn0). Then, following essentially
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the same argument as in the proofs of Propositions 3 and 4, we can obtain the optimal
policy. ��
Proof of Proposition 8 For 0 < d < 1, following the same argument as the proof of
Theorem 1, we can show the value function V (·) is again given by (A.1) for δ = 1/θ.

Since δ = 1/θ , the inequality in (A.2) for Case (i) in the proof of Theorem 1 becomes
an equality. Then, we can establish that the optimal policy correspondence h(x) =
[(1 − d)x,min{aC , θx}] for x ∈ (0, aI ], h(x) = [(1 − d)x,min{aC ,−ζ x + aC

aC−aI
}]

for x ∈ (aI , aC ], and h(x) = {(1 − d)x} for x > aC . For d = 1, a similar argument
can be applied to obtain the optimal policy correspondence. ��
Proof of Proposition 9 Let δ = 1/θ with θ > 1 and 0 < d < 1. The proof follows
closely the proof of Theorem 1 in Fujio et al. (2021). Postulate a candidate value
function given by

W (x) =
{

aI θ
aCb

δn(θnx − x̂) + δn

1−δ
u(x̂, x̂) for x ∈ [ x̂

θn+1 ,
x̂
θn

)
1−d
b δn

[
(1 − d)nx − x̂

] + 1−δn+δnu(x̂,x̂)
1−δ

for x ∈ [ x̂
(1−d)n

, x̂
(1−d)n+1 )

where n = 0, 1, 2 . . . We now verify if W (x) satisfies the Bellman equation. We
consider three cases: (i) x ∈ (0, x̂); (ii) x ∈ [x̂, x̂

1−d ); (iii) x ∈ [ x̂
(1−d)n

, x̂
(1−d)n+1 )with

n ≥ 1.
For Case (i), there exists n ∈ N such that x ∈ [x̂/θn, x̂/θn−1). Pick x ′ such

that (x, x ′) ∈ �. If x ′ > x̂ ≥ ζ(x̂ − x) + x̂ , then there exists n0 ∈ N such that
x ′ ∈ [ x̂

(1−d)n0−1 ,
x̂

(1−d)n0
). Since x ′ ≥ ζ(x̂ − x) + x̂ , we have

W0(x, x
′) ≡ u(x, x ′) + δW (x ′) = aI θ

aCb
x − aI

aCb
x ′ + δW (x ′);

∂W0(x, x ′)
∂x ′ = 1

aCb

[
aCδn0(1 − d)n0 − aI

]
< 0,

where the inequality follows from aC < aI and δ(1 − d) < 1. Consider x ′ such that
x̂ > x ′ ≥ ζ(x̂ − x) + x̂ . There exists n0 ∈ N such that x ′ ∈ [ x̂

θn0
, x̂

θn0−1 ). Since
x ′ ≥ ζ(x̂ − x) + x̂ ,

W0(x, x
′) ≡ u(x, x ′) + δW (x ′) = aI θ

aCb
x − aI

aCb
x ′ + δW (x ′);

∂W0(x, x ′)
∂x ′ = aI

aCb

[
(δθ)n0 − 1

] = 0,

where the last equality follows from δ = 1/θ. For x ′ < ζ(x̂ − x)+ x̂ < x̂ , there exists
n0 ∈ N such that x ′ ∈ [ x̂

θn0
, x̂

θn0−1 ). Since x
′ < ζ(x̂ − x) + x̂ ,

W0(x, x
′) ≡ u(x, x ′) + δW (x ′) = 1 − d

b
x − 1

b
x ′ + 1 + δW (x ′);

∂W0(x, x ′)
∂x ′ = 1

b

[
aI
aC

(δθ)n0 − 1

]
> 0,
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where the inequality follows from δθ = 1 and aI > aC . Taken together, we have
shown that W0(x, x ′) strictly decreases with x ′ for x ′ > x̂ , strictly increases with x ′
for x ′ < ζ(x̂ − x) + x̂ , and is constant with respect to x ′ for x ′ ∈ [ζ(x̂ − x) + x̂, x̂].
Since (x, x ′) ∈ �, θx ≥ x ′ ≥ (1 − d)x . Thus, W0(x, x ′) is maximized for x ′ ∈
[max{(1 − d)x,−ζ x + aCb

aC−aI
},min{θx, x̂}].

For Cases (ii) and (iii), following the proof of Theorem 1 in Fujio et al. (2021),
we can show that for x ∈ [x̂, x̂

1−d ), W0(x, x ′) is maximized with x ′ = x̂ , and for

x ∈ [ x̂
(1−d)n

, x̂
(1−d)n+1 ) with n ∈ N, W0(x, x ′) is maximized with x ′ = (1 − d)x .

Consider the policy correspondence

h̄(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[max{(1 − d)x,−ζ x + aCb
aC−aI

}, θx] for x ∈ (0, x̂
θ
]

[max{(1 − d)x,−ζ x + aCb
aC−aI

}, x̂] for x ∈ ( x̂
θ
, x̂]

{x̂} for x ∈ (x̂, x̂
1−d ]

{(1 − d)x} for x ∈ ( x̂
1−d ,∞)

,

and the straight-down-the-turnpike policy

ḡ(x) =

⎧⎪⎨
⎪⎩

θx for x ∈ (0, x̂
θ
]

x̂ for x ∈ ( x̂
θ
, x̂
1−d ]

(1 − d)x for x ∈ ( x̂
1−d ,∞)

,

For any x > 0, ḡ(x) ∈ h̄(x), and as shown above, W0(x, x ′) is maximized for any
x ′ ∈ h̄(x) and in particular, for x ′ = ḡ(x). Since W (x) = u(x, ḡ(x)) + δW (ḡ(x)) for
any x (as in Fujio et al. (2021)), W (x) = u(x, x ′) + δW (x ′) for any x ′ ∈ h̄(x). Thus,
W (·) satisfies the Bellman equation and the optimal policy correspondence is given
by h̄(·). ��
Proof of Proposition 10 For δ < 1/θ , the proof follows the proof of Theorem 1, so
the optimal policy for aC = aI is also given by g(x) = (1 − d)x for any x > 0.
For δ = 1/θ , the proof of Proposition 8 also carries over to the one-sector case
(aC = aI ) but with one modification: for aC = aI and δ = 1/θ , both inequalities
in (A.3) become equalities. This implies for x > aC , the optimal policy is given by
h(x) = [(1 − d)x,max{aC , (1 − d)x}]. ��
Proof of Propositions A1 and A2 We first consider the case of 0 < d < 1. For δ = μ0,
we can follow the proof of Theorem 2 to establish the optimal policy correspondence.
The only difference is that the inequality (A.4) becomes equality for δ = μ0. This
implies that for x ∈ (aC ,

aC
1−d ], W0(x, x ′) is maximized for any x ′ such that x ′ ≥

(1 − d)x , x ′ ≤ ζ(x̂ − x) + x̂ , and x ′ ≤ aC . We thus establish Proposition A1(i). For
δ = μn for some n ∈ N, we can follow the proof Proposition 3. The only difference
is that for (A.6), ∂W0(x,x ′)

∂x ′ = 0 for m = n because δ = μn . Thus, for x ∈ (xn,
xn−1
1−d ],

W0(x, x ′) strictly increases with x ′ for x ′ ≤ xn−1, is constant with respect to x ′
for x ′ ∈ (xn−1, xn], and strictly decreases with x ′ for x ′ > xn . Then, W0(x, x ′) is
maximized for x ′ ∈ (xn−1, xn]. Similarly, we can show that for x ∈ (

xn−1
1−d , xn

1−d ],
W0(x, x ′) is maximized for x ′ ∈ (xn−1, xn]. Using the fact that (x, x ′) ∈ �, we then
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obtain the optimal policy correspondence as in Proposition A1(ii). The argument is
essentially the same for the case of d = 1. ��

A.3 Auxiliary results

Lemma A1 For any non-negative integer n, we can write zn(δ) as

zn(δ) =
{

baI (−ζ )n(1−θδ)δn+1−aC (aI−aC )(1−(1−d)δ)2

aCb(1−δ(1−d))(aI−aC )(1+δζ )
for δ = − 1

ζ−nbaC (1−d)δ+nbaC−baI+2baC
aCb(1−δ(1−d))(aI−aC )ζ

for δ = − 1
ζ

. (A.8)

Proof For δ = −1/ζ , −δζ = 1 and we can simplify the geometric series in zn(δ) as
follows

zn(δ) = −1

b
+ δ

(
−

∑n−1
i=0 (−δζ )i

aI − aC
+ (−δζ )n

aC (1 − δ(1 − d))

)

= −1

b
+ δ

(
− 1 − (−δζ )n

(1 + δζ )(aI − aC )
+ (−δζ )n

aC (1 − δ(1 − d))

)

= −(1 + δζ )(aI − aC )aC (1 − δ(1 − d)) − baC (1 − δ(1 − d))δ(1 − (−δζ )n))

aCb(1 − δ(1 − d))(aI − aC )(1 + δζ )

+ δb(1 + δζ )(aI − aC )(−δζ )n

aCb(1 − δ(1 − d))(aI − aC )(1 + δζ )

= baI (−ζ )n(1 − θδ)δn+1 − aC (aI − aC )(1 − (1 − d)δ)2

aCb(1 − δ(1 − d))(aI − aC )(1 + δζ )
,

where we note that even though the first equation does not apply to n = 0 because the
summation is not property defined, the expressions in the second line onward apply
for any non-negative integer n.

For δ = −1/ζ , −δζ = 1, we have

zn(δ) = −1

b
+ δ

(
−

∑n−1
i=0 (−δζ )i

aI − aC
+ (−δζ )n

aC (1 − δ(1 − d))

)

= −1

b
+ δ

(
− n

aI − aC
+ 1

aC (1 − δ(1 − d))

)

= −(aI − aC )aC (1 − δ(1 − d)) − bnaC (1 − δ(1 − d))δ + b(aI − aC )δ

aCb(1 − δ(1 − d))(aI − aC )

= −nbaC (1 − d)δ + nbaC − baI + 2baC
aCb(1 − δ(1 − d))(aI − aC )ζ

,

where again we note that even though the first equation does not apply to n = 0, the
expressions in the second line onward apply for any non-negative integer n. We have
thus obtained the desired conclusion. ��

123



On optimal extinction in the matchbox two-sector model

Lemma A2 For any positive integer n, define z̃n : [0, 1/θ ] → R given by

z̃n(δ) ≡ baI (−ζ )n(1 − θδ)δn+1 − aC (aI − aC )(1 − (1 − d)δ)2. (A.9)

For δ = −1/ζ , zn(δ) = 0 if and only if z̃n(δ) = 0. Moreover, if aI > aC , then z̃n(·)
and its derivatives satisfy:

(a.1) z̃n(−1/ζ ) = 0, (a.2) z̃n(0) < 0, (a.3) z̃n(1/θ) < 0.
(b) zn (−1/ζ ) z̃′n (−1/ζ ) ≤ 0 and z̃′n(−1/ζ ) = 0 if and only if zn(−1/ζ ) = 0.
(c) There exists δ̄ ∈ (0, 1/θ) such that z̃′n(δ) > 0 for δ ∈ [0, δ̄) and z̃′n(δ) < 0 for

δ ∈ (δ̄, 1/θ ].
Proof From Lemma A1, for δ = −1/ζ ,

zn(δ) = baI (−ζ )n(1 − θδ)δn+1 − aC (aI − aC )(1 − (1 − d)δ)2

aCb(1 − δ(1 − d))(aI − aC )(1 + δζ )
,

so zn(δ) = 0 if the only if

baI (−ζ )n(1 − θδ)δn+1 − aC (aI − aC )(1 − (1 − d)δ)2 = z̃n(δ) = 0.

Let aI > aC . Since z̃n(·) is continuous on [0, 1/θ ], we have

z̃n(−1/ζ ) = lim
δ→−1/ζ

z̃n(δ)

= lim
δ→−1/ζ

aCb(1 − δ(1 − d))(aI − aC )(1 + δζ )zn(δ)

= lim
δ→−1/ζ

aCb(1 − δ(1 − d))(aI − aC )(1 + δζ )zn(−1/ζ ) = 0,

where the second equality follows from the definition of z̃n(·) and LemmaA1, the third
equality follows from the continuity of zn(·) on [0, 1/θ ], and the last equality follows
from (1 + δζ ) = 0 for δ = −1/ζ . Since aI > aC > 0, z̃n(0) = −aC (aI − aC ) < 0.
Since θ > (1−d) and aI > aC > 0, z̃n(1/θ) = −aC (aI −aC )(1− (1−d)/θ)2 < 0.
Thus, we have established (a.1)–(a.3).

For (b), since

z̃′n(δ) = baI (−ζ )n
[
(n + 1)(1 − θδ)δn − θδn+1

]
+2aC (aI − aC )(1 − d)(1 − (1 − d)δ), (A.10)

we have

z̃′n
(

−1

ζ

)
= (n + 1)baI

(
1 + θ

ζ

)
+ baI θ

ζ
+ 2aC (aI − aC )

(
1 + 1 − d

ζ

)
(1 − d)

= 1

ζ

[
(n + 1)b2aC
aC − aI

+ b2 + b(1 − d)aI − 2aCb(1 − d)

]

= 1

ζ

[
nbaC (ζ + (1 − d)) + b2aC

aC − aI
+ b2 + b(1 − d)(aI − 2aC )

]
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= 1

ζ

[
nbaCζ + (1 − d)nbaC +

(
− b2

aC − aI
+ b(1 − d)

)
(aI − 2aC )

]

= n(1 − d)baC
ζ

+ nbaC − b(aI − 2aC ),

= aCb(1 + (1 − d)/ζ )(aI − aC )ζ zn

(
−1

ζ

)
,

where the last equality follows from Lemma A1 for δ = −1/ζ . Since z̃′n(−1/ζ ) =
aCb(1+(1−d)/ζ )(aI −aC )ζ zn(−1/ζ ), z̃′n(−1/ζ ) = 0 if and only if zn(−1/ζ ) = 0.
Moreover, since ζ < 0 (for aI > aC ) and aI > aC ,

zn

(
−1

ζ

)
z̃′n

(
−1

ζ

)
= aCb(1 − δ(1 − d))(aI − aC )ζ z2n

(
−1

ζ

)
≤ 0.

Thus, we have established (b).
For (c), define f (δ) ≡ baI (−ζ )n

[
(n + 1)(1 − θδ)δn − θδn+1

]
. Then, from Eq.

(A.10), we have

z̃′n(δ) = f (δ) + 2aC (aI − aC )(1 − d)(1 − (1 − d)δ) > f (δ),

where the inequality follows from aI > aC and δ ∈ [0, 1/θ ]. Since f ′(δ) =
baI (−ζ )n(n + 1)δn−1[n − (n + 2)θδ], f ′(δ) ≥ 0 for δ ∈ [0, n

(n+2)θ ] and f ′(δ) < 0
for δ > n

(n+2)θ . Since f (0) = 0 and f ′(δ) ≥ 0 for δ ∈ [0, n
(n+2)θ ], f (δ) ≥ 0

for δ ∈ [0, n
(n+2)θ ]. Then, z̃′n(δ) > f (δ) ≥ 0 for δ ∈ [0, n

(n+2)θ ]. For δ > n
(n+2)θ ,

z̃′′n(δ) = f ′(δ)−2aC (aI −aC )(1−d)2 < f ′(δ) < 0,which implies that z̃′n(·) is strictly
decreasing on the interval [ n

(n+2)θ , 1
θ
]. Suppose z̃′n(1/θ) ≥ 0. By the monotonicity,

we must have z̃′n(δ) > 0 for δ ∈ ( n
(n+2)θ , 1

θ
) and we have shown that z̃′n(δ) > 0 for

δ ∈ [0, n
(n+2)θ ], so z̃n(·) is strictly increasing on δ ∈ [0, 1/θ ]. However, from (a.1)

and (a.3), we know z̃n(−1/ζ ) = 0 > z̃n(1/θ) with 1/θ > −1/ζ , contradicting to
z̃n(·) being strictly increasing. Thus, we must have z̃′n(1/θ) < 0. Since z̃′n(·) is strictly
decreasing on the interval [ n

(n+2)θ , 1
θ
] and z̃′n( n

(n+2)θ ) > 0, by the continuity of z̃′n ,
there exists δ̄ ∈ ( n

(n+2)θ , 1
θ
) such that z̃′n(δ̄) = 0, z̃′n(δ) < 0 for δ > δ̄ and z̃′n(δ) > 0

for δ ∈ [ n
(n+2)θ , δ̄). Since we have already shown that z̃′n(δ) > 0 for δ ∈ [0, n

(n+2)θ ],
we have obtained the desired conclusion. ��

Lemma A3 For ζ = −1, we can express xn more explicitly as

xn = aCb

b + d(aC − aI )
− daC (aI − aC )

(b + d(aC − aI ))(−ζ )n
.

For θ > 1, we further have xn = x̂ − (x̂ − aC )/(−ζ )n . Moreover, for ζ = −1,
xn = aC + naCb/(aI − aC ).
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Proof From Eq. (A.5) in the proof of Lemma 4, we directly obtain

xn = aCb

b + d(aC − aI )
− daC (aI − aC )

(b + d(aC − aI ))(−ζ )n
.

For θ > 1, we have x̂ = aCb
b+d(aC−aI )

, so we can further simplify the expression above
to obtain

xn = x̂ − (x̂ − aC )/(−ζ )n .

For ζ = −1, xn = xn−1 + aCb/(aI − aC ) = x0 + naCb/(aI − aC ) = aC +
naCb/(aI − aC ), where the last equality follows from x0 = aC . ��

Lemma A4 If δθ < 1 and aC < aI , then − 1
aI−aC

− ζ δ
aC (1−δ(1−d))

< 1
aC (1−δ(1−d))

.

Proof Since δθ < 1 and θ = b/aI + (1 − d), we have

δθ < 1 ⇔ δ(b + aI (1 − d)) − aI < 0

⇔ δ(b − (aC − aI )(1 − d)) + δaC (1 − d) + (aC − aI ) − aC < 0

⇔ (aC − aI )ζ δ + (aC − aI ) − aC (1 − δ(1 − d)) < 0

⇔ (−ζ δ − 1)(aI − aC ) − aC (1 − δ(1 − d)) < 0

⇔ −ζ δ − 1

aC (1 − δ(1 − d))
<

1

aI − aC

⇔ − 1

aI − aC
− ζ δ

aC (1 − δ(1 − d))
<

1

aC (1 − δ(1 − d))
,

where the second to last line follows from aC < aI and δ(1 − d) < 1. ��

Lemma A5 Let aC < aI , θ < 1, and μ0 < 1. There exists a unique n0 ∈ N such that
μn0−1 < 1 ≤ μn0 and xn0 < aI .

Proof Since θ < 1, from Lemma 2, limn→∞ μn = 1/θ > 1. We claim that there
exists a unique n0 ∈ N such that μn0−1 < 1 ≤ μn0 . Suppose on the contrary, there
does not exist a natural number n0 such that μn0−1 < 1 ≤ μn0 . Since the sequence{μn}∞n=0 is monotonically increasing and μ0 < 1, this implies that μn < 1 for any
n ∈ N. Since μn < 1 for any n, limn→∞ μn ≤ 1, leading to a contradiction. The strict
monotonicity of {μn}∞n=0 further guarantees the uniqueness of n0. What remains to
show is that xn0 < aI .

Sinceμn0−1 < 1 ≤ μn0 , from Lemma 2, we have zn0−1(1) > 0. For ζ = −1, from
Lemma A1, we have

zn0−1(1) = (n0 − 1)baCd − baI + 2baC
aCbd(aI − aC )ζ

> 0 ⇔ (n0 − 1)aCd < aI − 2aC ,
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where the second inequality follows from aI > aC and ζ < 0. From Lemma A3, for
ζ = −1,

xn0 = aC + n0aCb

aI − aC
= aC + n0aCd < aC + aCd + aI − 2aC = aI − (1 − d)aC < aI ,

where the second equation follows from ζ = −1 and the first inequality follows from
(n0 − 1)aCd < aI − 2aC . For ζ = −1, from Lemma 2, we have

zn0−1(1) = baI (−ζ )n0−1(1 − θ) − aC (aI − aC )d2

aCbd(aI − aC )(1 + ζ )
> 0

⇔ aC (aI − aC )d

(−ζ )n0(1 + ζ )
<

baI (1 − θ)

−ζd(1 + ζ )

⇔ daC (aI − aC )

(b + d(aC − aI ))(−ζ )n0
>

baI (1 − θ)

−ζd(b + d(aC − aI ))
, (A.11)

where the last inequality follows from aC < aI . Further, from Lemma A3, we have

xn0 = aCb

b + d(aC − aI )
− daC (aI − aC )

(b + d(aC − aI ))(−ζ )n0

<
aCb

b + d(aC − aI )
− baI (1 − θ)

−ζd(b + d(aC − aI ))

= aCb

b + d(aC − aI )
− b(daI − b)

−ζd(b + d(aC − aI ))

= aCb

b + d(aC − aI )
− b(daI − b)

d(b + d(aC − aI ))
+ b(daI − b)

d(b + d(aC − aI ))

− b(daI − b)

−ζd(b + d(aC − aI ))

= aCbd − aI bd + b2

(b + d(aC − aI ))d
+ (ζ + 1)b(daI − b)

ζd(b + d(aC − aI ))

= b

d
+ b(daI − b)

ζd(aC − aI )
= aI + b − aI d

d
+ b(daI − b)

ζd(aC − aI )

= aI + (b − aI d)(ζ(aC − aI ) − b)

ζd(aC − aI )
= aI − (b − aI d)(1 − d)

ζd
≤ aI ,

where the first inequality follows from (A.11) and the last inequality follows from
ζ < 0 and b < aI d (from θ < 1). Then, we have obtained the desired conclusion. ��
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