Online Appendix of

"Optimal Growth in the Robinson-Shinkai-Leontief Model: The Case of Capital-Intensive Consumption Goods"

April 23, 2019

Running Title: Optimal Growth in the RSL-model

[^0]
1 Appendix: Proofs of the Results

Proof of Proposition 1:

Since $a_{C}>a_{I}, \zeta>d-1$, which implies $(\hat{x}, \hat{p}) \in \mathbb{R}_{+}^{2}$. Given Condition $3, b / a_{I}>$ $d+1 / \rho-1>d$, where the second inequality stems from $0<\rho<1$. Since $b / a_{I}>d$, $d \hat{x}=d b a_{C} /\left(d a_{C}+b-d a_{I}\right)<b$ and $d \hat{x}<b \hat{x} / a_{I}$. Therefore, $d \hat{x}<b \min \left\{1, \hat{x} / a_{I}\right\}$. Then we must have $(\hat{x}, \hat{x}) \in \Omega$.

Consider y in $\Lambda\left(x, x^{\prime}\right)$. Define

$$
\begin{aligned}
\alpha\left(x, x^{\prime}, y\right) & =\left(1 / a_{C}\right)\left(x-\left(a_{I} / b\right)\left(x^{\prime}-(1-d) x\right)\right)-y \\
\beta\left(x, x^{\prime}, y\right) & =1-(1 / b)\left(x^{\prime}-(1-d) x\right)-y
\end{aligned}
$$

We have

$$
y+\hat{p}\left(\rho x^{\prime}-x\right)=(1-A)-A \alpha\left(x, x^{\prime}, y\right)-(1-A) \beta\left(x, x^{\prime}, y\right)
$$

where $A \equiv \frac{a_{C}(1-\rho(1-d))}{\left(a_{C}-a_{I}\right)(1+\rho \zeta)}$. Since $a_{C}>a_{I}$ (Condition 1$), \zeta>-1$, and we know $0<\rho<1$ and $0<d<1$, we have $A>0$. Given Condition 3, $A<1$. By construction, $\alpha\left(x, x^{\prime}, y\right) \geq 0$ and $\beta\left(x, x^{\prime}, y\right) \geq 0$, which implies

$$
y+\hat{p}\left(\rho x^{\prime}-x\right) \leq 1-A
$$

Let $\hat{y}=1-(d / b) \hat{x}=\left(1 / a_{C}\right)\left(1-a_{I} d / b\right) \hat{x}=\left(b-d a_{I}\right) /\left(b-d a_{I}+d a_{C}\right)>0$. We have $\hat{y} \in \Lambda(\hat{x}, \hat{x})$ and $\alpha(\hat{x}, \hat{x}, \hat{y})=\beta(\hat{x}, \hat{x}, \hat{y})=0$. Therefore, $\hat{y}=u(\hat{x}, \hat{x})$ and $\hat{y}+(\rho-1) \hat{p} \hat{x}=$ $1-A$, which implies

$$
\begin{equation*}
u(\hat{x}, \hat{x})+(\rho-1) \hat{p} \hat{x} \geq y+\hat{p}\left(\rho x^{\prime}-x\right) \text { for all }\left(x, x^{\prime}\right) \in \Omega \text { and } y \in \Lambda\left(x, x^{\prime}\right) \tag{1}
\end{equation*}
$$

Since $u\left(x, x^{\prime}\right)=\max \Lambda\left(x, x^{\prime}\right)$, we then obtain the desired inequality

$$
\begin{equation*}
u(\hat{x}, \hat{x})+(\rho-1) \hat{p} \hat{x} \geq u\left(x, x^{\prime}\right)+\hat{p}\left(\rho x^{\prime}-x\right) \text { for all }\left(x, x^{\prime}\right) \in \Omega \tag{2}
\end{equation*}
$$

Proof of Lemma 1:
When labor and capital are fully utilized, we must have

$$
\left(1 / a_{C}\right)\left(x-\left(a_{I} / b\right)\left(x^{\prime}-(1-d) x\right)\right)=1-(1 / b)\left(x^{\prime}-(1-d) x\right) .
$$

Let $y=\left(1 / a_{C}\right)\left(x-\left(a_{I} / b\right)\left(x^{\prime}-(1-d) x\right)\right)=1-(1 / b)\left(x^{\prime}-(1-d) x\right)$. Following the argument in the proof of Proposition 1, we then have $\alpha\left(x, x^{\prime}, y\right)=\beta\left(x, x^{\prime}, y\right)=0$, and we have shown $\alpha(\hat{x}, \hat{x}, \hat{y})=\beta(\hat{x}, \hat{x}, \hat{y})=0$, so $u(\hat{x}, \hat{x})+(\rho-1) \hat{p} \hat{x}=u\left(x, x^{\prime}\right)+\hat{p}\left(\rho x^{\prime}-x\right)$, or equivalently, $\delta^{\rho}\left(x, x^{\prime}\right)=0$.
Proof of Lemma 2:

Given Condition 3, we have $\rho b>a_{I}-\rho(1-d) a_{I}$, and since we know $a_{C}>a_{I}$, we must have

$$
\frac{\rho}{\left(a_{C}-a_{I}\right)+\rho b-\rho(1-d)\left(a_{C}-a_{I}\right)}>\frac{a_{I}}{a_{C} b},
$$

where the left hand side is equal to $\hat{p} \rho$.
Moreover, since $a_{C}>a_{I}, \rho \in(0,1)$ and $d \in(0,1),\left(a_{C}-a_{I}\right)(1-\rho(1-d))>0$, which implies

$$
\hat{p} \rho=\frac{\rho}{\left(a_{C}-a_{I}\right)+\rho b-\rho(1-d)\left(a_{C}-a_{I}\right)}<\frac{1}{b} .
$$

Proof of Lemma 3:
For (i), consider x_{1} and x_{2} in X and λ in $(0,1)$. Let $x_{3}=\lambda x_{1}+(1-\lambda) x_{2}$. Let $\left\{x_{i}(t), y_{i}(t)\right\}$ be an optimal program starting from x_{i} for $i=1,2,3$. By construction, Ω is convex. To see u being concave, letting $x=\lambda x_{1}(t)+(1-\lambda) x_{2}(t)$ and $x^{\prime}=\lambda x_{1}(t+$ 1) $+(1-\lambda) x_{2}(t+1)$, we have

$$
\begin{aligned}
& u\left(x, x^{\prime}\right)=\min \left\{\left(1 / a_{C}\right)\left(x-\left(a_{I} / b\right)\left(x^{\prime}-(1-d) x\right)\right), 1-(1 / b)\left(x^{\prime}-(1-d) x\right)\right\} \\
& \geq \lambda \min \left\{\left(1 / a_{C}\right)\left(x_{1}(t)-\left(a_{I} / b\right)\left(x_{1}(t+1)-(1-d) x_{1}(t)\right)\right), 1-(1 / b)\left(x_{1}(t+1)-(1-d) x_{1}(t)\right)\right\} \\
& +(1-\lambda) \min \left\{\left(1 / a_{C}\right)\left(x_{2}(t)-\left(a_{I} / b\right)\left(x_{2}(t+1)-(1-d) x_{2}(t)\right)\right), 1-(1 / b)\left(x_{2}(t+1)-(1-d) x_{2}(t)\right)\right\} \\
& =\lambda u\left(x_{1}(t), x_{1}(t+1)\right)+(1-\lambda) u\left(x_{2}(t), x_{2}(t+1)\right) .
\end{aligned}
$$

Since u is concave, we have

$$
\begin{aligned}
\lambda V\left(x_{1}\right)+(1-\lambda) V\left(x_{2}\right) & \leq \sum_{t=0}^{\infty} \rho^{t} u\left(\lambda x_{1}(t)+(1-\lambda) x_{2}(t), \lambda x_{1}(t+1)+(1-\lambda) x_{2}(t+1)\right) \\
& \leq V\left(\lambda x_{1}+(1-\lambda) x_{2}\right)
\end{aligned}
$$

where the second inequality follows from the fact that $\left\{\lambda x_{1}(t)+(1-\lambda) x_{2}(t)\right\}_{t=0}^{\infty}$ generates a program starting from $x_{3}=\lambda x_{1}+(1-\lambda) x_{2}$.

For (ii), consider two initial stocks, x_{1} and x_{2} with $x_{1}<x_{2}$. Let $x_{1}^{\prime} \in \arg \max _{x^{\prime} \in \Gamma\left(x_{1}\right)}\left\{u\left(x_{1}, x^{\prime}\right)+\right.$ $\left.\rho V\left(x^{\prime}\right)\right\}$. We then have $V\left(x_{1}\right)=u\left(x_{1}, x_{1}^{\prime}\right)+\rho V\left(x_{1}^{\prime}\right)$. By the optimality of $V, V\left(x_{2}\right) \geq$ $u\left(x_{2}, x_{1}^{\prime}\right)+\rho V\left(x_{1}^{\prime}\right)>u\left(x_{1}, x_{1}^{\prime}\right)+\rho V\left(x_{1}^{\prime}\right)=V\left(x_{1}\right)$, where the second inequality follows from $u\left(x, x^{\prime}\right)$ being strictly increasing with x.
Proof of Lemma 4:
For i), based on the definition of the value function,

$$
\begin{aligned}
V(x)-V(\hat{x}) & =\sum_{t=0}^{\infty} \rho^{t}[u(x(t), x(t+1))-u(\hat{x}, \hat{x})] \\
& \leq \sum_{t=0}^{\infty} \rho^{t}[(\rho-1) \hat{p} \hat{x}-\hat{p}(\rho x(t+1)-x(t))] \\
& =(\rho-1) \hat{p} \hat{x} /(1-\rho)+\hat{p} x(0)=\hat{p}(x-\hat{x})
\end{aligned}
$$

where $x=x(0)$ and the inequality follows from Equation 4 .
For ii), take x such as $x=\hat{x}+\epsilon$ for $\epsilon>0$. Letting $\epsilon \rightarrow 0$, we obtain $V_{+}^{\prime}(\hat{x}) \leq \hat{p}$. Similarly, take x such as $x=\hat{x}-\epsilon$ for $\epsilon>0$. Letting $\epsilon \rightarrow 0$, we obtain $\hat{p} \leq V_{-}^{\prime}(\hat{x})$.
Proof of Lemma 5:
Condition 1 implies $\zeta>d-1$, which guarantees $\hat{x}=a_{C}(\zeta+1-d) /(\zeta+1)<a_{C}$.
Condition 3 implies $b>d a_{I}$ and we know $a_{C}>a_{I}$, so we have

$$
\hat{x}-a_{I}=\frac{a_{C} b}{a_{C} d-a_{I} d+b}-a_{I}=\frac{\left(a_{C}-a_{I}\right)\left(b-d a_{I}\right)}{a_{C} d-a_{I} d+b}>0 .
$$

Therefore, $\hat{x}>a_{I}$.
So far we have shown that $a_{I}<\hat{x}<a_{C}$ holds for any ζ.
We now consider the relationship between $\hat{x} /(1-d)$ and a_{C}. Since $\hat{x} /(1-d)=$ $a_{C}(\zeta+1-d) /(\zeta+1-d-d \zeta), \hat{x} /(1-d)>a_{C}$. if and only if $\zeta>0$. If $\zeta=0, \hat{x} /(1-d)=a_{C}$. If $\zeta<0, \hat{x} /(1-d)<a_{C}$, but $\hat{x} /(1-d)>\hat{x}$ still holds because $d>0$.

Last, we consider the relationship between \hat{x} / θ and a_{I}.

$$
\begin{aligned}
\theta a_{I}-\hat{x} & =b+(1-d) a_{I}-\frac{a_{C}(\zeta+1-d)}{\zeta+1} \\
& =\zeta\left(a_{C}-a_{I}\right)+(1-d) a_{C}-\frac{a_{C}(\zeta+1-d)}{\zeta+1} \\
& =\zeta\left(a_{C}-a_{I}-\frac{a_{C} d}{\zeta+1}\right) \\
& =\frac{\zeta}{\zeta+1}\left(b+d\left(a_{C}-a_{I}\right)-a_{C} d\right) \\
& =\frac{\zeta}{\zeta+1}\left(b-d a_{I}\right) .
\end{aligned}
$$

Hence, $a_{I}>\hat{x} / \theta$ if and only if $\zeta>0$. If $\zeta=0, a_{I}=\hat{x} / \theta$. If $\zeta<0, a_{I}<\hat{x} / \theta$, but $\hat{x} / \theta<\hat{x}$ still holds because $\theta>1$ according to Condition 3.

Proof of Lemma 6:

Suppose on the contrary there exists $x \in(0, \hat{x} / \theta]$ and $z \in h(x)$ such that $z \neq \theta x$. Since $\zeta>0$, according to Lemma $5, x \leq \hat{x} / \theta<a_{I}$. Then we must have $z<\theta x$, and

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \theta x)+\rho V(\theta x)
$$

Rearranging the equation, we have
$u(x, z)-u(x, \theta x) \geq \rho(V(\theta x)-V(z)) \geq \rho V_{-}^{\prime}(\theta x)(\theta x-z) \geq \rho V_{-}^{\prime}(\hat{x})(\theta x-z) \geq \rho \hat{p}(\theta x-z)$,
where the second inequality follows from concavity of V, the third inequality follows from concavity of V and the fact that $\theta x \leq \hat{x}$ for $x \in(0, \hat{x} / \theta]$, and the last inequality follows from Lemma 4 ii .

By the definition of u, and given that $x \in(0, \hat{x} / \theta]$, we have

$$
u(x, z)-u(x, \theta x)=\left(1 / a_{C}\right)\left[x-\left(a_{I} / b\right)(z-(1-d) x)\right]=\frac{a_{I}}{b a_{C}}(\theta x-z)<\hat{p} \rho(\theta x-z),
$$

where the last inequality follows from Lemma 2. Since we have shown that $u(x, z)-$ $u(x, \theta x) \geq \rho \hat{p}(\theta x-z)$. This leads to a contradiction and establishes the desired result. Proof of Lemma 7:

Suppose on the contrary there exists $x \in[\hat{x} /(1-d), \infty)$ and $z \in h(x)$ such that $z \neq(1-d) x$. Then we must have $z>(1-d) x$, and

$$
V(x)=u(x, z)+\rho V(z) \geq u(x,(1-d) x)+\rho V((1-d) x)
$$

Rearranging the equation, we have

$$
\begin{aligned}
u(x,(1-d) x)-u(x, z) & \leq \rho(V(z)-V((1-d) x)) \leq \rho V_{+}^{\prime}((1-d) x)(z-(1-d) x) \\
& \leq \rho V_{+}^{\prime}(\hat{x})(z-(1-d) x) \leq \rho \hat{p}(z-(1-d) x)
\end{aligned}
$$

where the second inequality follows from concavity of V, the third inequality follows from concavity of V and the fact that $\hat{x} \leq(1-d) x$, and the last inequality follows from Lemma 4 ii).

By the definition of u, and given that $x \in[\hat{x} /(1-d), \infty)$, we have

$$
u(x,(1-d) x)-u(x, z)=(z-(1-d) x) / b>\hat{p} \rho(z-(1-d) x),
$$

where the last inequality follows from Lemma 2. Since we have shown that $u(x,(1-$ d) $x)-u(x, z) \leq \rho \hat{p}(z-(1-d) x)$. This leads to a contradiction and establishes the desired result.
Proof of Proposition 2:
We proceed by going over each subregion.
Subregion $\left(\hat{x} / \theta, a_{I}\right]$:
Suppose on the contrary there exists $x \in\left(\hat{x} / \theta, a_{I}\right]$ and $z \in h(x)$ such that $z \notin$ $[\hat{x}, \theta x]$. Then we must have $z<\hat{x}$. By the optimality of z,

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \hat{x})+\rho V(\hat{x})
$$

Rearranging the equation, we have

$$
u(x, z)-u(x, \hat{x}) \geq \rho(V(\hat{x})-V(z)) \geq \rho V_{-}^{\prime}(\hat{x})(\hat{x}-z) \geq \rho \hat{p}(\hat{x}-z)
$$

where the second inequality follows from concavity of V and the third inequality follows from Lemma 4 ii).

By the definition of u, and given that $x \in\left(\hat{x} / \theta, a_{I}\right]$, we have

$$
u(x, z)-u(x, \hat{x}) \leq \frac{a_{I}}{b a_{C}}(\hat{x}-z)<\hat{p} \rho(\hat{x}-z)
$$

where the last inequality follows from Lemma 2.
Since we have shown that $u(x, z)-u(x, \hat{x}) \geq \rho \hat{p}(\hat{x}-z)$. This leads to a contradiction and establishes the desired result.

Subregion $\left(a_{I}, \hat{x}\right]$:
Consider $\left(a_{I}, \hat{x}\right] \cdot{ }^{4}$ Suppose on the contrary there exists $x \in\left(a_{I}, \hat{x}\right]$ and $z \in h(x)$ such that $z \notin[\hat{x}, \zeta(\hat{x}-x)+\hat{x}]$. There are two possible cases: (i) $z<\hat{x}$; (ii) $z>\zeta(\hat{x}-x)+\hat{x}$.

Consider (i) $z<\hat{x}$. We have

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \hat{x})+\rho V(\hat{x})
$$

Rearranging the equation, we have

$$
u(x, z)-u(x, \hat{x}) \geq \rho(V(\hat{x})-V(z)) \geq \rho V_{-}^{\prime}(\hat{x})(\hat{x}-z) \geq \rho \hat{p}(\hat{x}-z)
$$

where the second inequality follows from concavity of V and the third inequality follows from Lemma 4 ii).

By the definition of u, and given that $x \in\left(a_{I}, \hat{x}\right]$, we have

$$
u(x, z)-u(x, \hat{x}) \leq \frac{a_{I}}{b a_{C}}(\hat{x}-z)<\hat{p} \rho(\hat{x}-z)
$$

where the last inequality follows from Lemma 2.
Since we have shown that $u(x, z)-u(x, \hat{x}) \geq \rho \hat{p}(\hat{x}-z)$. This leads to a contradiction and establishes the desired result.

Consider (ii) $z>\zeta(\hat{x}-x)+\hat{x}$. We have

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \zeta(\hat{x}-x)+\hat{x})+\rho V(\zeta(\hat{x}-x)+\hat{x}) .
$$

Rearranging the equation, we have

$$
\begin{aligned}
u(x, \zeta(\hat{x}-x)+\hat{x})-u(x, z) & \leq \rho(V(z)-V(\zeta(\hat{x}-x)+\hat{x})) \\
& \leq \rho V_{+}^{\prime}(\zeta(\hat{x}-x)+\hat{x})(z-(\zeta(\hat{x}-x)+\hat{x})) \\
& \leq \rho V_{+}^{\prime}(\hat{x})(z-(\zeta(\hat{x}-x)+\hat{x})) \leq \rho \hat{p}(z-(\zeta(\hat{x}-x)+\hat{x}))
\end{aligned}
$$

[^1]where the second inequality follows from concavity of V, the third inequality follows from concavity of V and the fact that $\zeta(\hat{x}-x)+\hat{x} \geq \hat{x}$ for $x \in\left(a_{I}, \hat{x}\right]$, and the last inequality follows from Lemma 4 ii).

By the definition of u, and given that $x \in\left(a_{I}, \hat{x}\right]$, we have

$$
u(x, \zeta(\hat{x}-x)+\hat{x})-u(x, z) \geq(1 / b)(z-(\zeta(\hat{x}-x)+\hat{x}))>\hat{p} \rho(z-(\zeta(\hat{x}-x)+\hat{x}))
$$

where the last inequality follows from Lemma 2.
Since we have shown that $u(x,(\zeta(\hat{x}-x)+\hat{x}))-u(x, z) \leq \rho \hat{p}(z-(\zeta(\hat{x}-x)+\hat{x}))$. This leads to a contradiction and establishes the desired result.

Subregion $\left(\hat{x}, a_{C}\right]$:
Suppose on the contrary there exists $x \in\left(\hat{x}, a_{C}\right]$ and $z \in h(x)$ such that $z \notin$ $[\zeta(\hat{x}-x)+\hat{x}, \hat{x}]$. There are two possible cases: (i) $z>\hat{x}$; (ii) $z<\zeta(\hat{x}-x)+\hat{x}$.

Consider (i) $z>\hat{x}$. We have

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \hat{x})+\rho V(\hat{x})
$$

Rearranging the equation, we have

$$
u(x, \hat{x})-u(x, z) \leq \rho(V(z)-V(\hat{x})) \leq \rho V_{+}^{\prime}(\hat{x})(z-\hat{x}) \leq \rho \hat{p}(z-\hat{x})
$$

where the second inequality follows from concavity of V and the last inequality follows from Lemma 4 ii).

By the definition of u, and given that $x \in\left(\hat{x}, a_{C}\right]$, we have

$$
u(x, \hat{x})-u(x, z) \geq(1 / b)(z-\hat{x})>\hat{p} \rho(z-\hat{x})
$$

where the last inequality follows from Lemma 2.
Since we have shown that $u(x, \hat{x})-u(x, z) \leq \rho \hat{p}(z-\hat{x})$. This leads to a contradiction and establishes the desired result.

Consider (ii) $z<\zeta(\hat{x}-x)+\hat{x}$. We have

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \zeta(\hat{x}-x)+\hat{x})+\rho V(\zeta(\hat{x}-x)+\hat{x})
$$

Rearranging the equation, we have

$$
\begin{aligned}
u(x, z)-u(x, \zeta(\hat{x}-x)+\hat{x}) & \geq \rho(V(\zeta(\hat{x}-x)+\hat{x})-V(z)) \\
& \geq \rho V_{-}^{\prime}(\zeta(\hat{x}-x)+\hat{x})((\zeta(\hat{x}-x)+\hat{x})-z) \\
& \geq \rho V_{-}^{\prime}(\hat{x})((\zeta(\hat{x}-x)+\hat{x})-z) \geq \rho \hat{p}((\zeta(\hat{x}-x)+\hat{x})-z)
\end{aligned}
$$

where the second inequality follows from concavity of V, the third inequality follows from concavity of V and the fact that $\zeta(\hat{x}-x)+\hat{x} \leq \hat{x}$ for $x \in\left(\hat{x}, a_{C}\right]$, and the last inequality follows from Lemma 4 ii).

By the definition of u, and given that $x \in\left(\hat{x}, a_{C}\right]$, we have

$$
u(x, z)-u(x, \zeta(\hat{x}-x)+\hat{x}) \leq \frac{a_{I}}{a_{C} b}((\zeta(\hat{x}-x)+\hat{x})-z)<\hat{p} \rho((\zeta(\hat{x}-x)+\hat{x})-z)
$$

where the last inequality follows from Lemma 2.
Since we have shown that $u(x, z)-u(x,(\zeta(\hat{x}-x)+\hat{x})) \geq \rho \hat{p}((\zeta(\hat{x}-x)+\hat{x})-z)$. This leads to a contradiction and establishes the desired result.

Subregion $\left(a_{C}, \hat{x} /(1-d)\right)$:
Last, we consider $\left(a_{C}, \hat{x} /(1-d)\right)$. Suppose on the contrary there exists $x \in\left(a_{C}, \hat{x} /(1-\right.$ $d)$) and $z \in h(x)$ such that $z \notin[(1-d) x, \hat{x}]$. Then we must have $z>\hat{x}$. By optimality of z,

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \hat{x})+\rho V(\hat{x}) .
$$

Rearranging the equation, we have

$$
u(x, \hat{x})-u(x, z) \leq \rho(V(z)-V(\hat{x})) \leq \rho V_{+}^{\prime}(\hat{x})(z-\hat{x}) \leq \rho \hat{p}(z-\hat{x})
$$

where the second inequality follows from concavity of V, and the last inequality follows from Lemma 4 ii).

By the definition of u, and given that $x \in\left(a_{C}, \hat{x} /(1-d)\right)$, we have

$$
u(x, \hat{x})-u(x, z) \geq(1 / b)(z-\hat{x})>\hat{p} \rho(z-\hat{x})
$$

where the last inequality follows from Lemma 2.
Since we have shown that $u(x, \hat{x})-u(x, z) \leq \rho \hat{p}(z-\hat{x})$. This leads to a contradiction and establishes the desired result.
Proof of Corollary 1:
First, $h(\hat{x})=\{\hat{x}\}$. If the initial stock is the golden rule stock, the system will stay at the golden rule stock. To see the dynamics for the initial stock $x \neq \hat{x}$, we rewrite $\zeta<1$ more explicitly as
$\frac{b}{a_{C}-a_{I}}-(1-d)<1 \Leftrightarrow b-(1-d)\left(a_{C}-a_{I}\right)<a_{C}-a_{I} \Leftrightarrow\left[\theta a_{I}-a_{C}\right]+\left[a_{I}-(1-d) a_{C}\right]<0$,
where the last inequality suggests either (i) $\theta a_{I}<a_{C}$ or (ii) $a_{I}<(1-d) a_{C}$ (or both).
Consider (i) $\theta a_{I}<a_{C}$. Suppose $x \in\left[a_{I}, \hat{x}\right)$. We know $G(x)=[\hat{x}, \zeta(\hat{x}-x)+\hat{x}]$. Since $\theta a_{I}<a_{C}, G(x) \subset\left[\hat{x}, \theta a_{I}\right] \subset\left[\hat{x}, a_{C}\right]$, and therefore, $G^{2}(x)=\left[\left(1-\zeta^{2}\right) \hat{x}+\zeta^{2} x, \hat{x}\right]$. Since $\zeta \in(0,1)$ and $x<\hat{x}$, we have $\left(1-\zeta^{2}\right) \hat{x}+\zeta^{2} x>x$. This implies that $\lim _{t \rightarrow \infty} G^{2 t}(x)=\{\hat{x}\}$. Since $\lim _{x \rightarrow \hat{x}} \zeta(\hat{x}-x)+\hat{x}=\hat{x}$, we must have $\lim _{t \rightarrow \infty} G^{2 t+1}(x)=\{\hat{x}\}$. This leads to the desired conclusion that x converges to \hat{x} for $x \in\left[a_{I}, \hat{x}\right)$. Since $\lim _{t \rightarrow \infty} G^{t}(x)=\{\hat{x}\}$ for any $x \in\left[a_{I}, \hat{x}\right), \lim _{t \rightarrow \infty} G^{t}(x)=\{\hat{x}\}$ for any $x \in G\left(\left[a_{I}, \hat{x}\right)\right)=\left[\hat{x}, \theta a_{I}\right]$. Further, since
$G\left(\left[\hat{x} / \theta, a_{I}\right]\right)=\left[\hat{x}, \theta a_{I}\right]$, the system must converge for any x in $\left[\hat{x} / \theta, a_{I}\right]$. Since we know that $h(x)=\{\theta x\}$ for x in $(0, \hat{x} / \theta)$, for any x in $(0, \hat{x} / \theta)$, after finite periods, the stock must enter the region $[\hat{x} / \theta, \hat{x})$, thus leading to convergence. So far we have shown that the system converges for any x in $\left(0, \theta a_{I}\right]$. According to Theorem 1 , for any x greater than \hat{x}, after finite periods, the stock must be below \hat{x}, again according to what we have shown, leading to convergence.

Consider (ii) $a_{I}<(1-d) a_{C}$. Suppose $x \in\left(\hat{x}, a_{C}\right]$. We know $G(x)=[\zeta(\hat{x}-x)+\hat{x}, \hat{x}]$. Since $a_{I}<(1-d) a_{C}, G(x) \subset\left[(1-d) a_{C}, \hat{x}\right] \subset\left[a_{I}, \hat{x}\right]$, and therefore, $G^{2}(x)=[\hat{x},(1-$ $\left.\left.\zeta^{2}\right) \hat{x}+\zeta^{2} x\right]$. Since $\zeta \in(0,1)$ and $x>\hat{x}$, we have $\left(1-\zeta^{2}\right) \hat{x}+\zeta^{2} x<x$. This implies that $\lim _{t \rightarrow \infty} G^{2 t}(x)=\{\hat{x}\}$. Since $\lim _{x \rightarrow \hat{x}} \zeta(\hat{x}-x)+\hat{x}=\hat{x}$, we must have $\lim _{t \rightarrow \infty} G^{2 t+1}(x)=$ $\{\hat{x}\}$. This leads to the desired conclusion that x converges to \hat{x} for $x \in\left(\hat{x}, a_{C}\right]$. Since $\lim _{t \rightarrow \infty} G^{t}(x)=\{\hat{x}\}$ for any $x \in\left(\hat{x}, a_{C}\right], \lim _{t \rightarrow \infty} G^{t}(x)=\{\hat{x}\}$ for any $x \in G\left(\left(\hat{x}, a_{C}\right]\right)=$ $\left[(1-d) a_{C}, \hat{x}\right]$. Further, since $G\left(\left[a_{C}, \hat{x} /(1-d)\right)\right)=\left[(1-d) a_{C}, \hat{x}\right]$, the system must converge for any x in $\left[a_{C}, \hat{x} /(1-d)\right)$. Since we know that $h(x)=\{(1-d) x\}$ for x in $[\hat{x} /(1-d), \infty)$, for any x in $[\hat{x} /(1-d), \infty)$, after finite periods, the stock must enter the region $([\hat{x}, \hat{x} /(1-d))$, thus leading to convergence. So far we have shown that the system converges for any x in $\left[(1-d) a_{C}, \infty\right)$. According to Theorem 1, for any x less than \hat{x}, after finite periods, the stock must be above \hat{x}, again according to what we have shown, leading to convergence.

We now have shown for any x, the optimal policy leads to a convergence to the golden rule stock.
Proof of Proposition 3:
Consider the subregion ($\left.0, a_{I}\right]$.
Suppose on the contrary there exists $x \in\left(0, a_{I}\right]$ and $z \in h(x)$ such that $z \neq \theta x$. Then we must have $z<\theta x$. By the optimality of z,

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \theta x)+\rho V(\theta x)
$$

Rearranging the equation, we have
$u(x, z)-u(x, \theta x) \geq \rho(V(\theta x)-V(z)) \geq \rho V_{-}^{\prime}(\theta x)(\theta x-z) \geq \rho V_{-}^{\prime}(\hat{x})(\theta x-z) \geq \rho \hat{p}(\theta x-z)$,
where the second inequality follows from concavity of V, the third inequality follows from concavity of V and the fact that $\theta a_{I} \leq \hat{x}$ for $\zeta \leq 0$ (Lemma 5), and the last inequality follows from Lemma 4 ii .

By the definition of u, and given that $x \leq a_{I}$, we have

$$
u(x, z)-u(x, \theta x)=\left(1 / a_{C}\right)\left[x-\left(a_{I} / b\right)(z-(1-d) x)\right]=\frac{a_{I}}{b a_{C}}(\theta x-z)<\hat{p} \rho(\theta x-z)
$$

where the last inequality follows from Lemma 2. Since we have shown that $u(x, z)-$ $u(x, \theta x) \geq \rho \hat{p}(\theta x-z)$. This leads to a contradiction and establishes the desired result.

Consider the subregion $\left[a_{C}, \infty\right)$.
Suppose on the contrary there exists $x \geq a_{C}$ and $z \in h(x)$ such that $z \neq(1-d) x$. Then we must have $z>(1-d) x$. By the optimality of z,

$$
V(x)=u(x, z)+\rho V(z) \geq u(x,(1-d) x)+\rho V((1-d) x)
$$

Rearranging the equation, we have

$$
\begin{aligned}
u(x,(1-d) x)-u(x, z) & \leq \rho(V(z)-V((1-d) x)) \leq \rho V_{+}^{\prime}((1-d) x)(z-(1-d) x) \\
& \leq \rho V_{+}^{\prime}(\hat{x})(z-(1-d) x) \leq \rho \hat{p}(z-(1-d) x)
\end{aligned}
$$

where the second inequality follows from concavity of V, the third inequality follows from concavity of V and the fact that $\hat{x} \leq(1-d) a_{C} \leq(1-d) x$ (Lemma 5), and the last inequality follows from Lemma 4 ii).

By the definition of u, and given that $x \geq a_{C}$, we have

$$
u(x,(1-d) x)-u(x, z)=(z-(1-d) x) / b>\hat{p} \rho(z-(1-d) x),
$$

where the last inequality follows from Lemma 2. Since we have shown that $u(x,(1-$ d) $x)-u(x, z) \leq \rho \hat{p}(z-(1-d) x)$. This leads to a contradiction and establishes the desired result.

Consider the subregion $\left(a_{I}, \hat{x}\right]$.
Suppose on the contrary there exists $x \in\left(a_{I}, \hat{x}\right]$ and $z \in h(x)$ such that $z \notin$ $[\zeta(\hat{x}-x)+\hat{x}, \hat{x}]$. There are two possible cases: (i) $z>\hat{x}$; (ii) $z<\zeta(\hat{x}-x)+\hat{x}$.

Consider (i) $z>\hat{x}$. We have

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \hat{x})+\rho V(\hat{x}) .
$$

Rearranging the equation, we have

$$
u(x, \hat{x})-u(x, z) \leq \rho(V(z)-V(\hat{x})) \leq \rho V_{+}^{\prime}(\hat{x})(z-\hat{x}) \leq \rho \hat{p}(z-\hat{x})
$$

where the second inequality follows from concavity of V and the last inequality follows from Lemma 4 ii).

By the definition of u, and given that $x \in\left(a_{I}, \hat{x}\right]$ and $\zeta \leq 0$, we have

$$
u(x, \hat{x})-u(x, z) \geq(1 / b)(z-\hat{x})>\hat{p} \rho(z-\hat{x})
$$

where the last inequality follows from Lemma 2.
Since we have shown that $u(x, \hat{x})-u(x, z) \leq \rho \hat{p}(z-\hat{x})$. This leads to a contradiction and establishes the desired result.

Consider (ii) $z<\zeta(\hat{x}-x)+\hat{x}$. We have

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \zeta(\hat{x}-x)+\hat{x})+\rho V(\zeta(\hat{x}-x)+\hat{x})
$$

Rearranging the equation, we have

$$
\begin{aligned}
u(x, z)-u(x, \zeta(\hat{x}-x)+\hat{x}) & \geq \rho(V(\zeta(\hat{x}-x)+\hat{x})-V(z)) \\
& \geq \rho V_{-}^{\prime}(\zeta(\hat{x}-x)+\hat{x})((\zeta(\hat{x}-x)+\hat{x})-z) \\
& \geq \rho V_{-}^{\prime}(\hat{x})((\zeta(\hat{x}-x)+\hat{x})-z) \geq \rho \hat{p}((\zeta(\hat{x}-x)+\hat{x})-z)
\end{aligned}
$$

where the second inequality follows from concavity of V, the third inequality follows from concavity of V and the fact that $\zeta(\hat{x}-x)+\hat{x} \leq \hat{x}$ for $x \in\left(a_{I}, \hat{x}\right]$, and the last inequality follows from Lemma 4 ii .

By the definition of u, and given that $x \in\left(a_{I}, \hat{x}\right]$, we have

$$
u(x, z)-u(x, \zeta(\hat{x}-x)+\hat{x}) \leq \frac{a_{I}}{a_{C} b}((\zeta(\hat{x}-x)+\hat{x})-z)<\hat{p} \rho((\zeta(\hat{x}-x)+\hat{x})-z)
$$

where the last inequality follows from Lemma 2.
Since we have shown that $u(x, z)-u(x,(\zeta(\hat{x}-x)+\hat{x})) \geq \rho \hat{p}((\zeta(\hat{x}-x)+\hat{x})-z)$. This leads to a contradiction and establishes the desired result.

Last, consider the subregion $\left(\hat{x}, a_{C}\right)$.
Suppose on the contrary there exists $x \in\left(\hat{x}, a_{C}\right)$ and $z \in h(x)$ such that $z \notin$ $[\hat{x}, \zeta(\hat{x}-x)+\hat{x}]$. There are two possible cases: (i) $z<\hat{x}$; (ii) $z>\zeta(\hat{x}-x)+\hat{x}$.

Consider (i) $z<\hat{x}$. We have

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \hat{x})+\rho V(\hat{x}) .
$$

Rearranging the equation, we have

$$
u(x, z)-u(x, \hat{x}) \geq \rho(V(\hat{x})-V(z)) \geq \rho V_{-}^{\prime}(\hat{x})(\hat{x}-z) \geq \rho \hat{p}(\hat{x}-z)
$$

where the second inequality follows from concavity of V and the third inequality follows from Lemma 4 ii).

By the definition of u, and given that $x \in\left(\hat{x}, a_{C}\right)$ and $\zeta \leq 0$, we have

$$
u(x, z)-u(x, \hat{x}) \leq \frac{a_{I}}{b a_{C}}(\hat{x}-z)<\hat{p} \rho(\hat{x}-z)
$$

where the last inequality follows from Lemma 2.
Since we have shown that $u(x, z)-u(x, \hat{x}) \geq \rho \hat{p}(\hat{x}-z)$. This leads to a contradiction and establishes the desired result.

Consider (ii) $z>\zeta(\hat{x}-x)+\hat{x}$. We have

$$
V(x)=u(x, z)+\rho V(z) \geq u(x, \zeta(\hat{x}-x)+\hat{x})+\rho V(\zeta(\hat{x}-x)+\hat{x})
$$

Rearranging the equation, we have

$$
\begin{aligned}
u(x, \zeta(\hat{x}-x)+\hat{x})-u(x, z) & \leq \rho(V(z)-V(\zeta(\hat{x}-x)+\hat{x})) \\
& \leq \rho V_{+}^{\prime}(\zeta(\hat{x}-x)+\hat{x})(z-(\zeta(\hat{x}-x)+\hat{x})) \\
& \leq \rho V_{+}^{\prime}(\hat{x})(z-(\zeta(\hat{x}-x)+\hat{x})) \leq \rho \hat{p}(z-(\zeta(\hat{x}-x)+\hat{x}))
\end{aligned}
$$

where the second inequality follows from concavity of V, the third inequality follows from concavity of V and the fact that $\zeta(\hat{x}-x)+\hat{x} \geq \hat{x}$ for $x \in\left(\hat{x}, a_{C}\right)$, and the last inequality follows from Lemma 4 ii).

By the definition of u, and given that $x \in\left(\hat{x}, a_{C}\right)$ we have

$$
u(x, \zeta(\hat{x}-x)+\hat{x})-u(x, z) \geq(1 / b)(z-(\zeta(\hat{x}-x)+\hat{x}))>\hat{p} \rho(z-(\zeta(\hat{x}-x)+\hat{x})),
$$

where the last inequality follows from Lemma 2.
Since we have shown that $u(x,(\zeta(\hat{x}-x)+\hat{x}))-u(x, z) \leq \rho \hat{p}(z-(\zeta(\hat{x}-x)+\hat{x}))$. This leads to a contradiction and establishes the desired result.
Proof of Proposition 4:
It has been covered in Proposition 3 for $x \in\left(0, a_{I}\right] \cup\left[a_{C}, \infty\right)$. We only need to consider $x \in\left(a_{I}, a_{C}\right)$. Suppose x is in $\left(a_{I}, \hat{x}\right]$. Since $\zeta>-1$ and $\zeta \leq 0$, we have $x<$ $\zeta(\hat{x}-x)+\hat{x} \leq \hat{x}$, which implies $\zeta(\hat{x}-x)+\hat{x} \in\left(a_{I}, a_{C}\right)$. Similarly, if $x \in\left(\hat{x}, a_{C}\right)$, we must have $\zeta(\hat{x}-x)+\hat{x} \in\left(a_{I}, a_{C}\right)$. This suggests that for any $x \in\left(a_{I}, a_{C}\right)$, if we follow the policy such that $x^{\prime}=\zeta(\hat{x}-x)+\hat{x}$, the stock of the next period is also in (a_{I}, a_{C}) and therefore, the policy that fully utilizes resources for $x \in\left(a_{I}, a_{C}\right)$ leads to zero total value loss. Any deviation from this policy leads to a positive value loss for $x \in\left(a_{I}, a_{C}\right)$, and therefore, it is not optimal. Hence, according to Lemma $8, h(x)=\{\zeta(\hat{x}-x)+\hat{x}\}$ for $x \in\left(a_{I}, a_{C}\right)$.
Proof of Proposition 5:
Since ζ is in $(0,1]$, or more explicitly, $b\left(a_{C}-a_{I}\right)-(1-d) \leq 1$, rearranging the terms, we must have $\left(a_{C}-\theta a_{I}\right)+\left((1-d) a_{C}-a_{I}\right) \geq 0$, which implies that at least one of the following two inequalities holds: (A) $a_{C} \geq \theta a_{I}$; (B) $(1-d) a_{C} \geq a_{I}$. Therefore, we consider three possible cases.
(i) Both (A) and (B) hold: $a_{C} \geq \theta a_{I}$ and $(1-d) a_{C} \geq a_{I}$.

This is the simplest case. Consider $x \in\left[a_{I}, a_{C}\right]$. Since $\left.f(x) \equiv \zeta(\hat{x}-x)-\hat{x}\right) \in$ $\left[a_{C}(1-d), a_{I} \theta\right] \subset\left[a_{I}, a_{C}\right]$, the sequence of the capital stock generated by $f,\left\{f^{t}(x)\right\}_{t=1}^{\infty}$, is bounded by $\left[a_{I}, a_{C}\right]$. Further, since we know from Lemma 1 that the value loss associated
with $(x, f(x))$ is zero for $x \in\left[a_{I}, a_{C}\right]$, the sum of the discounted value losses associated with $\left\{f^{t}(x)\right\}_{t=1}^{\infty}$ is zero. Stating from x, any program that deviates from $\left\{f^{t}(x)\right\}_{t=1}^{\infty}$ yields a positive value loss. According to Lemma $8, h(x)=\{\zeta(\hat{x}-x)-\hat{x})\}$ for $x \in\left[a_{I}, a_{C}\right]$.

Now consider $x \in\left(\hat{x} / \theta, a_{I}\right)$. According to Theorem 1, we know $h(x) \subset[\hat{x}, \theta x] \subset$ $\left[\hat{x}, \theta a_{I}\right] \subset\left[\hat{x}, a_{C}\right]$. Since we know that the total value loss for the optimal program starting from $x \in\left[a_{I}, a_{C}\right]$ is always zero, we just need to check the one-period value loss for (x, x^{\prime}) with $x \in\left(\hat{x} / \theta, a_{I}\right)$ and $x^{\prime} \in[\hat{x}, \theta x]$:

$$
\begin{aligned}
\delta^{\rho}\left(x, x^{\prime}\right) & =u(\hat{x}, \hat{x})+(\rho-1) \hat{p} \hat{x}-u\left(x, x^{\prime}\right)-\hat{p}\left(\rho x^{\prime}-x\right) \\
& =u(\hat{x}, \hat{x})+(\rho-1) \hat{p} \hat{x}-\left(1 / a_{C}\right)\left(x-\left(a_{I} / b\right)\left(x^{\prime}-(1-d) x\right)\right)-\hat{p}\left(\rho x^{\prime}-x\right) .
\end{aligned}
$$

Then we have

$$
\frac{\partial \delta^{\rho}\left(x, x^{\prime}\right)}{\partial x^{\prime}}=\frac{a_{I}}{a_{C} b}-\hat{p} \rho<0
$$

where the inequality follows from Lemma 2. Since the one-period value loss strictly decreases with x^{\prime}, it attains its unique minimum and therefore the total value loss attains its unique minimum, when x^{\prime} attains its unique maximum, which implies that $h(x)=$ $\{\theta x\}$ for $x \in\left(\hat{x} / \theta, a_{I}\right)$.

Consider $x \in\left(a_{C}, \hat{x} /(1-d)\right)$. According to Theorem 1, we know $h(x) \subset[(1-$ d) $x, \hat{x}] \subset\left[(1-d) a_{C}, \hat{x}\right] \subset\left[a_{I}, \hat{x}\right]$. Since we know that the total value loss for the optimal program starting from $x \in\left[a_{I}, a_{C}\right]$ is always zero, we just need to check the one-period value loss for $\left(x, x^{\prime}\right)$ with $x \in\left(a_{C}, \hat{x} /(1-d)\right)$ and $x^{\prime} \in[(1-d) x, \hat{x}]$:

$$
\delta^{\rho}\left(x, x^{\prime}\right)=u(\hat{x}, \hat{x})+(\rho-1) \hat{p} \hat{x}-\left(1-(1 / b)\left(x^{\prime}-(1-d) x\right)\right)-\hat{p}\left(\rho x^{\prime}-x\right)
$$

Then we have

$$
\frac{\partial \delta^{\rho}\left(x, x^{\prime}\right)}{\partial x^{\prime}}=\frac{1}{b}-\hat{p} \rho>0
$$

where the inequality follows from Lemma 2. Since the one-period value loss strictly increases with x^{\prime}, it attains its unique minimum and therefore the total value loss attains its unique minimum, when x^{\prime} attains its unique minimum, which implies $h(x)=\{(1-$ d) $x\}$ for $x \in\left(a_{C}, \hat{x} /(1-d)\right)$.

Combined with the characterization for $x \in(0, \hat{x} / \theta] \cup[\hat{x} /(1-d), \infty)$ as in Theorem 1, we have obtained the desired result for case (i).
(ii) Only (B) holds: $a_{C}<\theta a_{I}$ and $(1-d) a_{C} \geq a_{I}$.

The complication arises from the fact that $a_{C}<a_{I} \theta$. As $a_{C}<a_{I} \theta, f\left(a_{I}\right)=$ $\zeta\left(\hat{x}-a_{I}\right)+\hat{x}=a_{I} \theta>a_{C}$, which means, $f\left(a_{I}\right) \notin\left[a_{I}, a_{C}\right]$. The total value loss could be strictly positive even if we follow the policy f with an initial stock starting from a_{I}.

Consider $x \in\left[\hat{x}, a_{C}\right]$. Since $a_{C}(1-d) \geq a_{I}, f(x)=\zeta(\hat{x}-x)+\hat{x} \in\left[(1-d) a_{C}, \hat{x}\right] \subset$ $\left[a_{I}, \hat{x}\right]$. Since $f(x) \in\left[a_{I}, \hat{x}\right], f^{2}(x)=\zeta^{2} x+\left(1-\zeta^{2}\right) \hat{x} \in[\hat{x}, x] \subset\left[\hat{x}, a_{C}\right]$, where $\zeta^{2} x+(1-$
$\left.\zeta^{2}\right) \hat{x} \leq x$ follows from $\zeta \in(0,1]$ and $x \geq \hat{x}$. Therefore, $\left\{f^{t}(x)\right\}_{t=1}^{\infty}$, is bounded by $\left[a_{I}, a_{C}\right]$. It follows from the argument for case (i) that $h(x)=\{\zeta(\hat{x}-x)+\hat{x}\}$ for $x \in\left[\hat{x}, a_{C}\right]$.

Consider $x \in\left[a_{C}(\zeta-d) / \zeta, \hat{x}\right)$. Since $a_{C}<a_{I} \theta, a_{C}(\zeta-d) / \zeta>a_{I}$. Since $f(x) \in$ $\left(\hat{x}, a_{C}\right]$ with $\delta^{\rho}(x, f(x))=0$ and we have shown that the optimal policy function leads to the total value loss being zero for any initial stock in $\left(\hat{x}, a_{C}\right]$, we must have $h(x)=$ $\{\zeta(\hat{x}-x)+\hat{x}\}$ for $x \in\left[a_{C}(\zeta-d) / \zeta, \hat{x}\right)$.

Consider $x \in\left(a_{C}, \hat{x} /(1-d)\right)$. According to Theorem 1, we know $h(x) \subset[(1-$ d) $x, \hat{x}] \subset\left[(1-d) a_{C}, \hat{x}\right] \subset\left[a_{C}(\zeta-d) / \zeta, \hat{x}\right]$, where $\left[(1-d) a_{C}, \hat{x}\right] \subset\left[a_{C}(\zeta-d) / \zeta, \hat{x}\right]$ follows from $\zeta \in(0,1]$. Then it follows from the argument for case (i) that $h(x)=\{(1-d) x\}$ for $x \in\left(a_{C}, \hat{x} /(1-d)\right)$.

Consider $x \in\left(\hat{x} / \theta, a_{C} / \theta\right]$. Since $a_{C}<a_{I} \theta, a_{C} / \theta<a_{I}$. According to Theorem 1, we know $h(x) \subset[\hat{x}, \theta x] \subset\left[\hat{x}, a_{C}\right]$. Again, it follows from the argument for case (i) that $h(x)=\{\theta x\}$ for $x \in\left(\hat{x} / \theta, a_{C} / \theta\right]$.

Last, consider $x \in\left(a_{C} / \theta, a_{C}(\zeta-d) / \zeta\right)$.According to Theorem $1, h(x) \subset[\hat{x}, \min \{\theta x, \zeta(\hat{x}-$ $x)+\hat{x}\}]$. Since x is in $\left(a_{C} / \theta, a_{C}(\zeta-d) / \zeta\right)$, we have $\left[\hat{x}, a_{C}\right] \subset[\hat{x}, \min \{\theta x, \zeta(\hat{x}-x)+\hat{x}\}]$. Let $x^{\prime} \in[\hat{x}, \min \{\theta x, \zeta(\hat{x}-x)+\hat{x}\}]$. If $x^{\prime} \leq a_{C}$, then the total value loss is simply the one period value loss $\delta^{\rho}\left(x, x^{\prime}\right)$. Following the argument for case (i), the one period value loss is minimized when x^{\prime} attains its maximum, a_{C}. Hence, we must have $h(x) \subset\left[a_{C}, \min \{\theta x, \zeta(\hat{x}-x)+\hat{x}\}\right]$.

Combined with the characterization for $x \in(0, \hat{x} / \theta] \cup[\hat{x} /(1-d), \infty)$ in Theorem 1, we have obtained the desired result for case (ii).
(iii) Only (A) holds: $a_{C} \geq \theta a_{I}$ and $(1-d) a_{C}<a_{I}$.

The complication for this case arises from the fact that $a_{C}(1-d)<a_{I}$. As $a_{C}(1-$ $d)<a_{I}, f\left(a_{C}\right)=\zeta\left(\hat{x}-a_{C}\right)+\hat{x}=(1-d) a_{C}<a_{I}$, which means $f\left(a_{C}\right) \notin\left[a_{I}, a_{C}\right]$. The total value loss could be strictly positive even if we follow the policy f with an initial stock starting from a_{C}.

Consider $x \in\left[a_{I}, \hat{x}\right]$. Since $a_{C} \geq a_{I} \theta$, it follows symmetrically from the argument for $\left[\hat{x}, a_{C}\right]$ in case (ii) that $h(x)=\{\zeta(\hat{x}-x)+\hat{x}\}$ for $x \in\left[a_{I}, \hat{x}\right]$.

Consider $x \in\left(\hat{x}, a_{C}(1+(1-d) / \zeta)-a_{I} / \zeta\right]$. Since $a_{C}(1-d)<a_{I}, a_{C}(1+(1-d) / \zeta)-$ $a_{I} / \zeta<a_{C}$. Then it follows symmetrically from the argument for $\left[a_{C}(\zeta-d) / \zeta, \hat{x}\right)$ in case (ii) that $h(x)=\{\zeta(\hat{x}-x)+\hat{x}\}$ for $x \in\left(\hat{x}, a_{C}(1+(1-d) / \zeta)-a_{I} / \zeta\right]$.

Consider $x \in\left(\hat{x} / \theta, a_{I}\right)$. According to Theorem 1, $h(x) \subset[\hat{x}, \theta x] \subset\left[\hat{x}, \theta a_{I}\right] \subset$ $\left[\hat{x}, a_{C}(1+(1-d) / \zeta)-a_{I} / \zeta\right]$, where the last \subset holds because $\theta a_{I} \leq a_{C}(1+(1-d) / \zeta)-a_{I} / \zeta$, which itself follows from $f\left(\theta a_{I}\right) \geq a_{I}$ (due to $\zeta \leq 1$), $f\left(a_{C}(1+(1-d) / \zeta)-a_{I} / \zeta\right)=a_{I}$, and f being decreasing. Then it follows from the argument for case (i) that $h(x)=\{\theta x\}$ for $x \in\left(\hat{x} / \theta, a_{I}\right)$.

Consider $x \in\left(a_{I} /(1-d), \hat{x} /(1-d)\right)$. Since $a_{C}(1-d)<a_{I}, a_{I} /(1-d)>a_{C}$. According
to Theorem $1, h(x) \subset[(1-d) x, \hat{x}] \subset\left[a_{I}, \hat{x}\right]$. It then follows from the argument for case (i) that $h(x)=\{(1-d) x\}$ for $x \in\left(a_{I} /(1-d), \hat{x} /(1-d)\right)$.

Last, consider $x \in\left(a_{C}(1+(1-d) / \zeta)-a_{I} / \zeta, a_{I} /(1-d)\right)$. According to Theorem 1, $h(x) \subset[\max \{(1-d) x, \zeta(\hat{x}-x)+\hat{x}\}, \hat{x}]$. Since x is in $\left(a_{C}(1+(1-d) / \zeta)-a_{I} / \zeta, a_{I} /(1-d)\right)$, we have $\left[a_{I}, \hat{x}\right] \subset[\max \{(1-d) x, \zeta(\hat{x}-x)+\hat{x}\}, \hat{x}]$. If $x^{\prime} \geq a_{I}$, then total value loss is simply the one period value loss. Following the argument for case (i), the one period value loss is minimized when x^{\prime} attains its minimum, a_{I}. Then we must have $h(x) \subset$ $\left[\max \{(1-d) x, \zeta(\hat{x}-x)+\hat{x}\}, a_{I}\right]$.

Combined with the characterization for $x \in(0, \hat{x} / \theta] \cup[\hat{x} /(1-d), \infty)$ in Theorem 1, we have obtained the desired result for case (iii).
Proof of Theorem 2:
We first show the first part of the proposition concerning the definition and the order of $\bar{\rho}_{t}$. Let $f_{t}(\rho) \equiv a_{C} b(1-d)^{t} \rho^{t+1}-\left(a_{C}-a_{I}\right) a_{I} \zeta \rho-a_{I}\left(a_{C}-a_{I}\right)$. Since $f_{t}(0)<0$ and $f_{t}(\rho)>0$ for ρ sufficiently large, there must exist at least one positive root to the equation $f_{t}(\rho)=0$. Suppose there are two different roots, denoted by ρ_{1} and ρ_{2}. Without loss of generality, let $\rho_{1}>\rho_{2}$. Then we have

$$
\begin{aligned}
& a_{C} b(1-d)^{t} \rho_{1}^{t+1}-\left(a_{C}-a_{I}\right) a_{I} \zeta \rho_{1}-a_{I}\left(a_{C}-a_{I}\right)=0 \\
& a_{C} b(1-d)^{t} \rho_{2}^{t+1}-\left(a_{C}-a_{I}\right) a_{I} \zeta \rho_{2}-a_{I}\left(a_{C}-a_{I}\right)=0,
\end{aligned}
$$

which implies

$$
\begin{aligned}
& a_{C} b(1-d)^{t}\left(\rho_{1}^{t+1}-\rho_{2}^{t+1}\right)=\left(a_{C}-a_{I}\right) a_{I} \zeta\left(\rho_{1}-\rho_{2}\right) \\
\Leftrightarrow & \left(a_{C}-a_{I}\right) a_{I} \zeta=\frac{a_{C} b(1-d)^{t}\left(\rho_{1}^{t+1}-\rho_{2}^{t+1}\right)}{\rho_{1}-\rho_{2}}>a_{C} b(1-d)^{t} \rho_{2}^{t},
\end{aligned}
$$

where the last equality follows from $\rho_{1}>\rho_{2}$. Since $\left(a_{C}-a_{I}\right) a_{I} \zeta>a_{C} b(1-d)^{t} \rho_{2}^{t}, a_{C} b(1-$ $d)^{t} \rho_{2}^{t+1}-\left(a_{C}-a_{I}\right) a_{I} \zeta \rho_{2}-a_{I}\left(a_{C}-a_{I}\right)<0$, leading to the contradiction. Hence, $\bar{\rho}_{t}$ is the unique positive root, being well-defined. Further, since $f_{1}(1 / \theta)=b a_{C}(1-d-\theta) / \theta^{2}<0$ and we know $f_{1}(\rho)$ is positive for ρ sufficiently large, $\bar{\rho}_{1}>1 / \theta$. Since $f_{t}(1 /(1-d))=$ $b\left(a_{C}-a_{I}\right) /(1-d)>0$ and we know $f_{t}(0)<0, \bar{\rho}_{t}<1 /(1-d)$ for any t.

By definition, we have

$$
\begin{array}{r}
f_{t+1}\left(\bar{\rho}_{t+1}\right)=0 \Leftrightarrow a_{C} b(1-d)^{t+1} \bar{\rho}_{t+1}^{t+2}-\left(a_{C}-a_{I}\right) a_{I} \zeta \bar{\rho}_{t+1}-a_{I}\left(a_{C}-a_{I}\right)=0 \\
f_{t}\left(\bar{\rho}_{t}\right)=0 \Leftrightarrow a_{C} b(1-d)^{t} \bar{\rho}_{t}^{t+1}-\left(a_{C}-a_{I}\right) a_{I} \zeta \bar{\rho}_{t}-a_{I}\left(a_{C}-a_{I}\right)=0 .
\end{array}
$$

Since $\bar{\rho}_{t+1}<1 /(1-d)$, or equivalently, $\bar{\rho}_{t+1}(1-d)<1$,

$$
f_{t+1}\left(\bar{\rho}_{t}\right)=a_{C} b(1-d)^{t+1} \bar{\rho}_{t}^{t+2}-\left(a_{C}-a_{I}\right) a_{I} \zeta \bar{\rho}_{t}-\left(a_{C}-a_{I}\right) a_{I}<f_{t}\left(\bar{\rho}_{t}\right)=0
$$

Further, we know $f_{t}(\rho)>0$ for ρ sufficiently large, so $\bar{\rho}_{t+1}>\bar{\rho}_{t}$.
Now we turn to characterizing the optimal policy correspondence for $x \in\left(a_{C} / \theta, a_{C}(\zeta-\right.$ d) $/ \zeta$).

Pick the smallest integer t_{0} such that $a_{I} \theta(1-d)^{t_{0}}<a_{C}$. By construction, $t_{0} \geq 1$ and $a_{I} \theta(1-d)^{t_{0}-1} \geq a_{C}$, so $a_{I} \theta(1-d)^{t_{0}} \geq(1-d) a_{C} \geq a_{C}(\zeta-d) / \zeta$, where the last inequality follows from $0<\zeta \leq 1$.

Pick $x \in\left(a_{C} / \theta, a_{C}(\zeta-d) / \zeta\right)$. According to case (ii) in Proposition 5, the stock for the next period, x^{\prime}, has to be in $\left[a_{C}, \min \{\zeta(\hat{x}-x)+\hat{x}, \theta x\}\right]$, so $x^{\prime} \leq a_{I} \theta$. Pick the smallest integer t_{1} such that $(1-d)^{t_{1}} x^{\prime}<a_{C}$. Since $x^{\prime} \leq a_{I} \theta$, by construction, $1 \leq t_{1} \leq t_{0}$ and $(1-d)^{t_{1}-1} x^{\prime} \geq a_{C}$, so $(1-d)^{t_{1}} x^{\prime} \geq(1-d) a_{C} \geq a_{C}(\zeta-d) / \zeta$.

For any stock above a_{C}, notice that the optimality mandates the stock in the following period to shirk by $(1-d)$ times. Following x^{\prime}, the stock for the next t_{1} periods are given by $\left\{(1-d)^{t} x^{\prime}\right\}_{t=1}^{t_{1}}$. Since $(1-d)^{t_{1}} x^{\prime} \subset\left[a_{C}(\zeta-d) / \zeta, a_{C}\right)$, after $t_{1}+1$ periods, the total value loss of the remaining periods will be zero, so we focus on the total value loss for the first $t_{1}+1$ periods.

Consider the $\left(t_{1}+1\right)$-period value loss associated with $\left(x, x^{\prime}\right)$ and $\left\{\left((1-d)^{t} x^{\prime},(1-\right.\right.$ $\left.\left.d)^{t+1} x^{\prime}\right)\right\}_{t=0}^{t=t_{1}-1}$.

$$
\begin{aligned}
\ell_{t_{1}}\left(x^{\prime}\right) \equiv & \delta^{\rho}\left(x, x^{\prime}\right)+\sum_{t=0}^{t_{1}-1} \rho^{t+1} \delta^{\rho}\left((1-d)^{t} x^{\prime},(1-d)^{t+1} x^{\prime}\right) \\
= & \left.\frac{1-\rho^{t_{1}} u(\hat{x}, \hat{x})+\left(\rho^{t_{1}}-1\right) \hat{p} \hat{x}-\left(1 / a_{C}\right)\left(x-\left(a_{I} / b\right)\left(x^{\prime}-(1-d) x\right)\right)}{1-\rho}\right) \\
& -\frac{\rho-\rho^{t_{1}+1}}{1-\rho}-\hat{p}\left(\rho^{t_{1}+1}(1-d)^{t_{1}} x^{\prime}-x\right)
\end{aligned}
$$

Then we have

$$
\frac{\partial \ell_{t_{1}}\left(x^{\prime}\right)}{\partial x^{\prime}}=\frac{a_{I}}{b a_{C}}-\hat{p} \rho^{t_{1}+1}(1-d)^{t_{1}}=\frac{a_{I}}{b a_{C}}-\frac{\rho^{t_{1}+1}(1-d)^{t_{1}}}{\left(a_{C}-a_{I}\right)(1+\rho \zeta)}=\frac{-f_{t_{1}}(\rho)}{b a_{C}\left(a_{C}-a_{I}\right)(1+\rho \zeta)} .
$$

By construction of $\bar{\rho}_{t_{1}}$, we know $\partial \ell_{t_{1}}\left(x^{\prime}\right) / \partial x^{\prime}>0$ if $\rho<\bar{\rho}_{t_{1}} ; \partial \ell_{t_{1}}\left(x^{\prime}\right) / \partial x^{\prime}=0$ if $\rho=\bar{\rho}_{t_{1}} ; \partial \ell_{t_{1}}\left(x^{\prime}\right) / \partial x^{\prime}<0$ if $\rho>\bar{\rho}_{t_{1}}$.

Consider two possible cases: (1) $t_{0}=1$; (2) $t_{0}>1$.
For (1), $t_{0}=1$, so we must have $t_{1}=1$. Hence, we only need to consider the two-period value loss. If $\rho>\bar{\rho}_{1}$, the total value loss attains its minimum when x^{\prime} attains its maximum, suggesting that $h(x)=\min \{\zeta(\hat{x}-x)+\hat{x}, \theta x\}$. If $\rho=\bar{\rho}_{1}$, then the total value loss is constant with respect to x^{\prime}, so $h(x)=\left[a_{C}, \min \{\zeta(\hat{x}-x)+\hat{x}, \theta x\}\right]$. If $\rho<\bar{\rho}_{1}$, the total value loss attains its minimum when x^{\prime} attains its minimum, which implies that $h(x)=\left\{a_{C}\right\}$.

For $(2),(1 / \theta, \infty)$ is partitioned by $\left\{\bar{\rho}_{t}\right\}_{t=1}^{t_{0}}:\left(1 / \theta, \bar{\rho}_{1}\right),\left\{\bar{\rho}_{1}\right\},\left(\bar{\rho}_{1}, \bar{\rho}_{2}\right), \ldots,\left(\bar{\rho}_{t_{0}-1}, \bar{\rho}_{t_{0}}\right)$, $\left\{\bar{\rho}_{t_{0}}\right\}$, and $\left(\bar{\rho}_{t_{0}}, \infty\right)$.

Consider $\rho<\bar{\rho}_{1}$. The two-period value loss is minimized and total value loss is equal to the two-period value loss when $x^{\prime}=a_{C}$, so $h(x)=\left\{a_{C}\right\}$.

Consider $\rho=\bar{\rho}_{t_{1}}$ for t_{1} taking value from $\left\{1,2, \ldots, t_{0}\right\}$. The $\left(t_{1}+1\right)$-period value loss and also the total value loss is constant with respect to x^{\prime} for a fixed t_{1}. Since $\rho=\bar{\rho}_{t_{1}}, \rho>\bar{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}<t_{1}$ and $\rho<\bar{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}>t_{1}$. Since $\rho>\bar{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}<t_{1}$, the total value loss decreases with x^{\prime} for $t_{1}^{\prime}<t_{1}$, or equivalently, for $x^{\prime}(1-d)^{t_{1}-1}<a_{C}{ }^{5}$ Since $\rho<\bar{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}>t_{1}$, the total value loss increases with x^{\prime} for $t_{1}^{\prime}>t_{1}$, or equivalently, for $x^{\prime}(1-d)^{t_{1}} \geq a_{C}$. If $\min \{\zeta(\hat{x}-x)+\hat{x}, \theta x\}>$ $a_{C} /(1-d)^{t_{1}}$, then $h(x)=\left[a_{C} /(1-d)^{t_{1}-1}, a_{C} /(1-d)^{t_{1}}\right]$. If $\min \{\zeta(\hat{x}-x)+\hat{x}, \theta x\} \in$ $\left[a_{C} /(1-d)^{t_{1}-1}, a_{C} /(1-d)^{t_{1}}\right]$, then $h(x)=\left[a_{C} /(1-d)^{t_{1}-1}, \min \{\zeta(\hat{x}-x)+\hat{x}, \theta x\}\right]$. If $\min \{\zeta(\hat{x}-x)+\hat{x}, \theta x\}<a_{C} /(1-d)^{t_{1}}$, then $h(x)=\min \{\zeta(\hat{x}-x)+\hat{x}, \theta x\}$. In sum, for $\rho=\bar{\rho}_{t_{1}}, h(x)=\left[\min \left\{\zeta(\hat{x}-x)+\hat{x}, \theta x, a_{C} /(1-d)^{t-1}\right\}, \min \left\{\zeta(\hat{x}-x)+\hat{x}, \theta x, a_{C} /(1-d)^{t}\right\}\right]$.

Consider $\rho \in\left(\bar{\rho}_{t_{1}}, \bar{\rho}_{t_{1}+1}\right)$ for t_{1} taking value from $\left\{1, \ldots, t_{0}-1\right\}$. The $\left(t_{1}+1\right)$ period value loss and also the total value loss is minimized when x^{\prime} attains its maximum for a fixed t_{1}. Since $\rho<\bar{\rho}_{t_{1}+1}, \rho<\bar{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}>t_{1}$, which implies that the total value loss increases with x^{\prime} for $t_{1}^{\prime}>t_{1}$, or equivalently, for $x^{\prime}(1-d)^{t_{1}} \geq a_{C}$. Since $\rho>\bar{\rho}_{t_{1}}, \rho>\bar{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}<t_{1}$, which implies that the total value loss decreases with x^{\prime} for $t_{1}^{\prime}<t_{1}$, or equivalently, for $x^{\prime}(1-d)^{t_{1}-1}<a_{C}$. Hence, we have $h(x)=$ $\min \left\{\zeta(\hat{x}-x)+\hat{x}, \theta x, a_{C} /(1-d)^{t_{1}}\right\}$.

Last, consider $\rho>\bar{\rho}_{t_{0}}$. Since we know $\bar{\rho}_{t_{0}} \geq \bar{\rho}_{t}$ for any $t=1,2, \ldots, t_{0}, \rho>\bar{\rho}_{t_{1}}$ for any t_{1}. This suggests that the $\left(t_{1}+1\right)$-period value loss and also the total value loss decreases with x^{\prime} for any given t_{1}. Then the total value loss is minimized when x^{\prime} attains its maximum. Hence, $h(x)=\min \{\zeta(\hat{x}-x)+\hat{x}, \theta x\}$.

We have now obtained the desired conclusion.
Proof of Theorem 3:
We first show the first part of the proposition concerning the definition and the order of $\tilde{\rho}_{t}$. Let $f_{t}(\rho) \equiv b \theta^{t} \rho^{t+1}-\left(a_{C}-a_{I}\right) \zeta \rho-\left(a_{C}-a_{I}\right)$. Since $f_{t}(0)<0$ and $f_{t}(\rho)>0$ for ρ sufficiently large, there must exist at least one positive root to the equation $f_{t}(\rho)=0$. Suppose there are two different roots, denoted by ρ_{1} and ρ_{2}. Without loss of generality, let $\rho_{1}>\rho_{2}$. Then we have

$$
\begin{aligned}
b \theta^{t} \rho_{1}^{t+1}-\left(a_{C}-a_{I}\right) \zeta \rho_{1}-\left(a_{C}-a_{I}\right) & =0 \\
b \theta^{t} \rho_{2}^{t+1}-\left(a_{C}-a_{I}\right) \zeta \rho_{2}-\left(a_{C}-a_{I}\right) & =0,
\end{aligned}
$$

[^2]which implies
$$
b \theta^{t}\left(\rho_{1}^{t+1}-\rho_{2}^{t+1}\right)=\left(a_{C}-a_{I}\right) \zeta\left(\rho_{1}-\rho_{2}\right) \Leftrightarrow\left(a_{C}-a_{I}\right) \zeta=\frac{b \theta^{t}\left(\rho_{1}^{t+1}-\rho_{2}^{t+1}\right)}{\rho_{1}-\rho_{2}}>b \theta^{t} \rho_{2}^{t}
$$
where the last equality follows from $\rho_{1}>\rho_{2}$. Since $\left(a_{C}-a_{I}\right) \zeta>b \theta^{t} \rho_{2}^{t}, b \theta^{t} \rho_{2}^{t+1}-\left(a_{C}-\right.$ $\left.a_{I}\right) \zeta \rho_{2}-\left(a_{C}-a_{I}\right)<0$, leading to the contradiction. Hence, $\tilde{\rho}_{t}$ is the unique positive root, being well-defined. Further, since $f_{t}(1 / \theta)=-b\left(a_{C}-a_{I}\right) /\left(a_{I} \theta\right)<0$ and we know $f_{t}(\rho)$ is positive for ρ sufficiently large, $\tilde{\rho}_{t}>1 / \theta$.

By definition, we have

$$
\begin{array}{r}
f_{t+1}\left(\tilde{\rho}_{t+1}\right)=0 \Leftrightarrow b \theta^{t+1} \tilde{\rho}_{t+1}^{t+2}-\left(a_{C}-a_{I}\right) \zeta \tilde{\rho}_{t+1}-\left(a_{C}-a_{I}\right)=0 \\
f_{t}\left(\tilde{\rho}_{t}\right)=0 \Leftrightarrow b \theta^{t} \tilde{\rho}_{t}^{t+1}-\left(a_{C}-a_{I}\right) \zeta \tilde{\rho}_{t}-\left(a_{C}-a_{I}\right)=0 .
\end{array}
$$

Since $\tilde{\rho}_{t+1}>1 / \theta$, or equivalently, $\tilde{\rho}_{t+1} \theta>1$,

$$
f_{t}\left(\tilde{\rho}_{t+1}\right)=b \theta^{t} \tilde{\rho}_{t+1}^{t+1}-\left(a_{C}-a_{I}\right) \zeta \tilde{\rho}_{t+1}-\left(a_{C}-a_{I}\right)<f_{t+1}\left(\tilde{\rho}_{t+1}\right)=0 .
$$

Further, we know $f_{t}(\rho)>0$ for ρ sufficiently large, so $\tilde{\rho}_{t+1}<\tilde{\rho}_{t}$.
Now we turn to characterizing the optimal policy correspondence for $x \in\left(a_{C}(1+\right.$ $\left.(1-d) / \zeta)-a_{I} / \zeta, a_{I} /(1-d)\right)$.

Pick the smallest integer t_{0} such that $\theta^{t_{0}} a_{C}(1-d)>a_{I}$. By construction, $t_{0} \geq 1$ and $\theta^{t_{0}-1} a_{C}(1-d) \leq a_{I}$, so $\theta^{t_{0}} a_{C}(1-d) \leq \theta a_{I} \leq a_{C}(1+(1-d) / \zeta)-a_{I} / \zeta$, where the last inequality follows from $\zeta \leq 1$ and $a_{I} \theta \leq a_{C}$ (also see the proof for Proposition 5).

Pick $x \in\left(a_{C}(1+(1-d) / \zeta)-a_{I} / \zeta, a_{I} /(1-d)\right)$. According to case (iii) in Proposition 5 , the stock for the next period, x^{\prime}, has to be in $\left[\max \{\zeta(\hat{x}-x)+\hat{x},(1-d) x\}, a_{I}\right]$, so $x^{\prime} \geq a_{C}(1-d)$. Pick the smallest integer t_{1} such that $\theta^{t_{1}} x^{\prime}>a_{I}$. Since $x^{\prime} \geq a_{C}(1-d)$, by construction, $1 \leq t_{1} \leq t_{0}$ and $\theta^{t_{1}-1} a_{C}(1-d) \leq a_{I}$, so $\theta^{t_{1}} a_{C}(1-d) \leq \theta a_{I} \leq a_{C}(1+$ $(1-d) / \zeta)-a_{I} / \zeta$. For any stock below a_{I}, notice that the optimality mandates the stock in the following period to grow up by θ times. Following x^{\prime}, the stock for the next t_{1} periods are given by $\left\{\theta^{t} x^{\prime}\right\}_{t=1}^{t_{1}}$. Since $\theta^{t_{1}} x^{\prime} \subset\left(a_{I}, a_{C}(1+(1-d) / \zeta)-a_{I} / \zeta\right]$, after $t_{1}+1$ periods, the total value loss of the remaining periods will be zero, so we focus on the total value loss for the first $t_{1}+1$ periods.

Consider the $\left(t_{1}+1\right)$-period value loss associated with $\left(x, x^{\prime}\right)$ and $\left\{\left(\theta^{t} x^{\prime}, \theta^{t+1} x^{\prime}\right)\right\}_{t=0}^{t=t_{1}-1}$.

$$
\begin{aligned}
\ell_{t_{1}}\left(x^{\prime}\right) & \equiv \delta^{\rho}\left(x, x^{\prime}\right)+\sum_{t=0}^{t_{1}-1} \rho^{t+1} \delta^{\rho}\left(\theta^{t} x^{\prime}, \theta^{t+1} x^{\prime}\right) \\
& =\frac{1-\rho^{t_{1}}}{1-\rho} u(\hat{x}, \hat{x})+\left(\rho^{t_{1}}-1\right) \hat{p} \hat{x}-\left(1-(1 / b)\left(x^{\prime}-(1-d) x\right)\right)-\hat{p}\left(\rho^{t_{1}+1} \theta^{t_{1}} x^{\prime}-x\right)
\end{aligned}
$$

Then we have

$$
\frac{\partial \ell_{t_{1}}\left(x^{\prime}\right)}{\partial x^{\prime}}=\frac{1}{b}-\hat{p} \rho^{t_{1}+1} \theta^{t_{1}}=\frac{1}{b}-\frac{\rho^{t_{1}+1} \theta^{t_{1}}}{\left(a_{C}-a_{I}\right)(1+\rho \zeta)}=\frac{-f_{t_{1}}(\rho)}{b\left(a_{C}-a_{I}\right)(1+\rho \zeta)} .
$$

By construction of $\tilde{\rho}_{t_{1}}$, we know $\partial \ell_{t_{1}}\left(x^{\prime}\right) / \partial x^{\prime}>0$ if $\rho<\tilde{\rho}_{t_{1}} ; \partial \ell_{t_{1}}\left(x^{\prime}\right) / \partial x^{\prime}=0$ if $\rho=\tilde{\rho}_{t_{1}} ; \partial \ell_{t_{1}}\left(x^{\prime}\right) / \partial x^{\prime}<0$ if $\rho>\tilde{\rho}_{t_{1}}$.

Consider two possible cases: (1) $t_{0}=1$; (2) $t_{0}>1$.
For $(1), t_{0}=1$, so $t_{1}=1$. Hence, we only need to consider the two-period value loss. If $\rho<\tilde{\rho}_{1}$, the total value loss attains its minimum when x^{\prime} attains its minimum, suggesting that $h(x)=\max \{\zeta(\hat{x}-x)+\hat{x},(1-d) x\}$. If $\rho=\tilde{\rho}_{1}$, then the total value loss is constant with respect to x^{\prime}, so $h(x)=\left[\max \{\zeta(\hat{x}-x)+\hat{x},(1-d) x\}, a_{I}\right]$. If $\rho>\tilde{\rho}_{1}$, the total value loss attains its minimum when x^{\prime} attains its maximum, which implies that $h(x)=\left\{a_{I}\right\}$.

For $(2),(1 / \theta, \infty)$ is partitioned by $\left\{\tilde{\rho}_{t}\right\}_{t=1}^{t_{0}}:\left(1 / \theta, \tilde{\rho}_{t_{0}}\right),\left\{\tilde{\rho}_{t_{0}}\right\},\left(\tilde{\rho}_{t_{0}}, \tilde{\rho}_{t_{0}-1}\right), \ldots,\left(\tilde{\rho}_{2}, \tilde{\rho}_{1}\right)$, $\left\{\tilde{\rho}_{1}\right\}$, and $\left(\tilde{\rho}_{1}, \infty\right)$.

Consider $\rho>\tilde{\rho}_{1}$. The two-period value loss is minimized and total value loss is equal to the two-period value loss when $x^{\prime}=a_{I}$, so $h(x)=\left\{a_{I}\right\}$.

Consider $\rho=\tilde{\rho}_{t_{1}}$ for t_{1} taking value from $\left\{1,2, \ldots, t_{0}\right\}$. The $\left(t_{1}+1\right)$-period value loss and also the total value loss is constant with respect to x^{\prime} for a fixed t_{1}. Since $\rho=\tilde{\rho}_{t_{1}}, \rho>\tilde{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}>t_{1}$ and $\rho<\tilde{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}<t_{1}$. Since $\rho>\tilde{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}>t_{1}$, the total value loss decreases with x^{\prime} for $t_{1}^{\prime}>t_{1}$, or equivalently, for $x^{\prime} \theta^{t_{1}} \leq a_{I} \stackrel{6}{6}^{6}$ Since $\rho<\tilde{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}<t_{1}$, the total value loss increases with x^{\prime} for $t_{1}^{\prime}<t_{1}$, or equivalently, for $x^{\prime} \theta^{t_{1}-1}>a_{I}$. If $\max \{\zeta(\hat{x}-x)+\hat{x},(1-d) x\}<a_{I} / \theta^{t_{1}}$, then $h(x)=\left[a_{I} / \theta^{t_{1}}, a_{I} / \theta^{t_{1}-1}\right]$. If $\max \{\zeta(\hat{x}-x)+\hat{x},(1-d) x\} \in\left[a_{I} / \theta^{t_{1}}, a_{I} / \theta^{t_{1}-1}\right]$, then $h(x)=\left[\max \{\zeta(\hat{x}-x)+\hat{x},(1-d) x\}, a_{I} / \theta^{t_{1}-1}\right]$. If $\max \{\zeta(\hat{x}-x)+\hat{x},(1-d) x\}>a_{I} / \theta^{t_{1}-1}$, then $h(x)=\max \{\zeta(\hat{x}-x)+\hat{x},(1-d) x\}$. In sum, for $\rho=\tilde{\rho}_{t_{1}}, h(x)=[\max \{\zeta(\hat{x}-x)+$ $\left.\left.\hat{x},(1-d) x, a_{I} / \theta^{t_{1}}\right\}, \max \left\{\zeta(\hat{x}-x)+\hat{x},(1-d) x, a_{I} / \theta^{t_{1}-1}\right\}\right]$.

Consider $\rho \in\left(\tilde{\rho}_{t_{1}+1}, \tilde{\rho}_{t_{1}}\right)$ for t_{1} taking value from $\left\{1, \ldots, t_{0}-1\right\}$. The $\left(t_{1}+1\right)$-period value loss and also the total value loss is minimized when x^{\prime} attains its minimum for a fixed t_{1}. Since $\rho>\tilde{\rho}_{t_{1}+1}, \rho>\tilde{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}>t_{1}$, which implies that the total value loss decreases with x^{\prime} for $t_{1}^{\prime}>t_{1}$, or equivalently, for $x^{\prime} \theta^{t_{1}} \leq a_{I}$. Since $\rho<\tilde{\rho}_{t_{1}}, \rho<\tilde{\rho}_{t_{1}^{\prime}}$ for any $t_{1}^{\prime}<t_{1}$, which implies that the total value loss increases with x^{\prime} for $t_{1}^{\prime}<t_{1}$, or equivalently, for $x^{\prime} \theta^{t_{1}-1}>a_{I}$. Hence, we have $h(x)=\max \left\{\zeta(\hat{x}-x)+\hat{x},(1-d) x, a_{I} / \theta^{t_{1}}\right\}$.

Last, consider $\rho<\tilde{\rho}_{t_{0}}$. Since we know $\tilde{\rho}_{t_{0}} \leq \tilde{\rho}_{t}$ for any $t=1,2, \ldots, t_{0}, \rho<\tilde{\rho}_{t_{1}}$ for any t_{1}. This suggests that the $\left(t_{1}+1\right)$-period value loss and also the total value loss increases with x^{\prime} for any given t_{1}. Then the total value loss is minimized when x^{\prime} attains its minimum. Hence, $h(x)=\max \{\zeta(\hat{x}-x)+\hat{x},(1-d) x\}$.

[^3]We have now obtained the desired conclusion.

2 Additional Illustration

Figure 1: Illustration of Theorem 3

References

[1] Khan, M. Ali and Mitra, T., 2007, Optimal growth under discounting in the twosector Robinson-Solow-Srinivasan model: a dynamic programming approach, Journal of Difference Equations and Applications 13, 151-168.

[^0]: *Division of Social Sciences, Yale-NUS College, Singapore.
 ${ }^{\dagger}$ Department of Economics, Yokohama National University, Japan
 ${ }^{\ddagger}$ Department of Economics, The Johns Hopkins University, Baltimore, MD 21218.

[^1]: ${ }^{4}$ This is the range of $(0, \hat{x}]$ in the RSS model. When $a_{I}=0$, the optimal policy correspondence can be further reduced to a function. For a complete characterization for $x \in\left(a_{I}, \hat{x}\right]$ in the RSS model, see Lemma 2 in [1.

[^2]: ${ }^{5}$ Here we implicitly rely on the continuity of the value function.

[^3]: ${ }^{6}$ Here we implicitly rely on the continuity of the value function.

