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1 Appendix: Proofs of the Results

Proof of Proposition 1:
Since aC > aI , ζ > d � 1, which implies (x̂, p̂) 2 R2

+. Given Condition 3, b/aI >
d + 1/ρ � 1 > d, where the second inequality stems from 0 < ρ < 1. Since b/aI > d,
dx̂ = dbaC/(daC + b � daI) < b and dx̂ < bx̂/aI . Therefore, dx̂ < bminf1, x̂/aIg. Then
we must have (x̂, x̂) 2 
.

Consider y in �(x, x0). De�ne

α(x, x0, y) = (1/aC)(x� (aI/b)(x0 � (1� d)x))� y,
β(x, x0, y) = 1� (1/b)(x0 � (1� d)x)� y.

We have
y + p̂(ρx0 � x) = (1� A)� Aα(x, x0, y)� (1� A)β(x, x0, y),

where A � aC(1��(1�d))
(aC�aI)(1+��) . Since aC > aI (Condition 1), ζ > �1, and we know 0 < ρ < 1

and 0 < d < 1, we have A > 0. Given Condition 3, A < 1. By construction, α(x, x0, y) � 0
and β(x, x0, y) � 0, which implies

y + p̂(ρx0 � x) � 1� A.

Let ŷ = 1� (d/b)x̂ = (1/aC)(1�aId/b)x̂ = (b�daI)/(b�daI +daC) > 0. We have
ŷ 2 �(x̂, x̂) and α(x̂, x̂, ŷ) = β(x̂, x̂, ŷ) = 0. Therefore, ŷ = u(x̂, x̂) and ŷ + (ρ � 1)p̂x̂ =
1� A, which implies

u(x̂, x̂) + (ρ� 1)p̂x̂ � y + p̂(ρx0 � x) for all (x, x0) 2 
 and y 2 �(x, x0). (1)

Since u(x, x0) = max �(x, x0), we then obtain the desired inequality

u(x̂, x̂) + (ρ� 1)p̂x̂ � u(x, x0) + p̂(ρx0 � x) for all (x, x0) 2 
. (2)

Proof of Lemma 1:
When labor and capital are fully utilized, we must have

(1/aC)(x� (aI/b)(x0 � (1� d)x)) = 1� (1/b)(x0 � (1� d)x).

Let y = (1/aC)(x � (aI/b)(x0 � (1 � d)x)) = 1 � (1/b)(x0 � (1 � d)x). Following the
argument in the proof of Proposition 1, we then have α(x, x0, y) = β(x, x0, y) = 0, and
we have shown α(x̂, x̂, ŷ) = β(x̂, x̂, ŷ) = 0, so u(x̂, x̂) + (ρ� 1)p̂x̂ = u(x, x0) + p̂(ρx0 � x),
or equivalently, δ�(x, x0) = 0.
Proof of Lemma 2:
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Given Condition 3, we have ρb > aI � ρ(1� d)aI , and since we know aC > aI , we
must have

ρ

(aC � aI) + ρb� ρ(1� d)(aC � aI)
>

aI
aCb

,

where the left hand side is equal to p̂ρ.
Moreover, since aC > aI , ρ 2 (0, 1) and d 2 (0, 1), (aC � aI)(1 � ρ(1 � d)) > 0,

which implies

p̂ρ =
ρ

(aC � aI) + ρb� ρ(1� d)(aC � aI)
<

1
b
.

Proof of Lemma 3:
For (i), consider x1 and x2 in X and λ in (0, 1). Let x3 = λx1 + (1 � λ)x2. Let

fxi(t), yi(t)g be an optimal program starting from xi for i = 1, 2, 3. By construction, 

is convex. To see u being concave, letting x = λx1(t) + (1 � λ)x2(t) and x0 = λx1(t +
1) + (1� λ)x2(t+ 1), we have

u(x, x0) = minf(1/aC)(x� (aI/b)(x0 � (1� d)x)), 1� (1/b)(x0 � (1� d)x)g
� λminf(1/aC)(x1(t)� (aI/b)(x1(t+ 1)� (1� d)x1(t))), 1� (1/b)(x1(t+ 1)� (1� d)x1(t))g
+(1� λ) minf(1/aC)(x2(t)� (aI/b)(x2(t+ 1)� (1� d)x2(t))), 1� (1/b)(x2(t+ 1)� (1� d)x2(t))g
= λu(x1(t), x1(t+ 1)) + (1� λ)u(x2(t), x2(t+ 1)).

Since u is concave, we have

λV (x1) + (1� λ)V (x2) �
1X
t=0

ρtu(λx1(t) + (1� λ)x2(t), λx1(t+ 1) + (1� λ)x2(t+ 1))

� V (λx1 + (1� λ)x2),

where the second inequality follows from the fact that fλx1(t)+(1�λ)x2(t)g1t=0 generates
a program starting from x3 = λx1 + (1� λ)x2.

For (ii), consider two initial stocks, x1 and x2 with x1 < x2. Let x01 2 arg maxx02�(x1)fu(x1, x
0)+

ρV (x0)g. We then have V (x1) = u(x1, x
0
1) + ρV (x01). By the optimality of V , V (x2) �

u(x2, x
0
1) + ρV (x01) > u(x1, x

0
1) + ρV (x01) = V (x1), where the second inequality follows

from u(x, x0) being strictly increasing with x.

Proof of Lemma 4:
For i), based on the de�nition of the value function,

V (x)� V (x̂) =
1X
t=0

ρt[u(x(t), x(t+ 1))� u(x̂, x̂)]

�
1X
t=0

ρt[(ρ� 1)p̂x̂� p̂(ρx(t+ 1)� x(t))]

= (ρ� 1)p̂x̂/(1� ρ) + p̂x(0) = p̂(x� x̂)
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where x = x(0) and the inequality follows from Equation 4.
For ii), take x such as x = x̂ + ε for ε > 0. Letting ε ! 0, we obtain V 0+(x̂) � p̂.

Similarly, take x such as x = x̂� ε for ε > 0. Letting ε! 0, we obtain p̂ � V 0�(x̂).
Proof of Lemma 5:

Condition 1 implies ζ > d� 1, which guarantees x̂ = aC(ζ + 1� d)/(ζ + 1) < aC .

Condition 3 implies b > daI and we know aC > aI , so we have

x̂� aI =
aCb

aCd� aId+ b
� aI =

(aC � aI)(b� daI)
aCd� aId+ b

> 0.

Therefore, x̂ > aI .

So far we have shown that aI < x̂ < aC holds for any ζ.
We now consider the relationship between x̂/(1 � d) and aC . Since x̂/(1 � d) =

aC(ζ+1�d)/(ζ+1�d�dζ), x̂/(1�d) > aC . if and only if ζ > 0. If ζ = 0, x̂/(1�d) = aC .

If ζ < 0, x̂/(1� d) < aC , but x̂/(1� d) > x̂ still holds because d > 0.
Last, we consider the relationship between x̂/θ and aI .

θaI � x̂ = b+ (1� d)aI �
aC(ζ + 1� d)

ζ + 1

= ζ(aC � aI) + (1� d)aC �
aC(ζ + 1� d)

ζ + 1

= ζ

�
aC � aI �

aCd

ζ + 1

�
=

ζ

ζ + 1
(b+ d(aC � aI)� aCd)

=
ζ

ζ + 1
(b� daI) .

Hence, aI > x̂/θ if and only if ζ > 0. If ζ = 0, aI = x̂/θ. If ζ < 0, aI < x̂/θ, but x̂/θ < x̂

still holds because θ > 1 according to Condition 3.
Proof of Lemma 6:

Suppose on the contrary there exists x 2 (0, x̂/θ] and z 2 h(x) such that z 6= θx.

Since ζ > 0, according to Lemma 5, x � x̂/θ < aI . Then we must have z < θx, and

V (x) = u(x, z) + ρV (z) � u(x, θx) + ρV (θx).

Rearranging the equation, we have

u(x, z)�u(x, θx) � ρ(V (θx)�V (z)) � ρV 0�(θx)(θx� z) � ρV 0�(x̂)(θx� z) � ρp̂(θx� z),

where the second inequality follows from concavity of V , the third inequality follows
from concavity of V and the fact that θx � x̂ for x 2 (0, x̂/θ], and the last inequality
follows from Lemma 4 ii).
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By the de�nition of u, and given that x 2 (0, x̂/θ], we have

u(x, z)� u(x, θx) = (1/aC)[x� (aI/b)(z � (1� d)x)] =
aI
baC

(θx� z) < p̂ρ(θx� z),

where the last inequality follows from Lemma 2. Since we have shown that u(x, z) �
u(x, θx) � ρp̂(θx� z). This leads to a contradiction and establishes the desired result.
Proof of Lemma 7:

Suppose on the contrary there exists x 2 [x̂/(1 � d),1) and z 2 h(x) such that
z 6= (1� d)x. Then we must have z > (1� d)x, and

V (x) = u(x, z) + ρV (z) � u(x, (1� d)x) + ρV ((1� d)x).

Rearranging the equation, we have

u(x, (1� d)x)� u(x, z) � ρ(V (z)� V ((1� d)x)) � ρV 0+((1� d)x)(z � (1� d)x)

� ρV 0+(x̂)(z � (1� d)x) � ρp̂(z � (1� d)x),

where the second inequality follows from concavity of V , the third inequality follows
from concavity of V and the fact that x̂ � (1� d)x, and the last inequality follows from
Lemma 4 ii).

By the de�nition of u, and given that x 2 [x̂/(1� d),1), we have

u(x, (1� d)x)� u(x, z) = (z � (1� d)x)/b > p̂ρ(z � (1� d)x),

where the last inequality follows from Lemma 2. Since we have shown that u(x, (1 �
d)x)�u(x, z) � ρp̂(z�(1�d)x). This leads to a contradiction and establishes the desired
result.
Proof of Proposition 2:

We proceed by going over each subregion.
Subregion (x̂/θ, aI ]:
Suppose on the contrary there exists x 2 (x̂/θ, aI ] and z 2 h(x) such that z /2

[x̂, θx]. Then we must have z < x̂. By the optimality of z,

V (x) = u(x, z) + ρV (z) � u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, z)� u(x, x̂) � ρ(V (x̂)� V (z)) � ρV 0�(x̂)(x̂� z) � ρp̂(x̂� z),

where the second inequality follows from concavity of V and the third inequality follows
from Lemma 4 ii).
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By the de�nition of u, and given that x 2 (x̂/θ, aI ], we have

u(x, z)� u(x, x̂) � aI
baC

(x̂� z) < p̂ρ(x̂� z),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, z)�u(x, x̂) � ρp̂(x̂�z). This leads to a contradiction

and establishes the desired result.
Subregion (aI , x̂]:
Consider (aI , x̂].4 Suppose on the contrary there exists x 2 (aI , x̂] and z 2 h(x)

such that z /2 [x̂, ζ(x̂�x)+x̂]. There are two possible cases: (i) z < x̂; (ii) z > ζ(x̂�x)+x̂.
Consider (i) z < x̂. We have

V (x) = u(x, z) + ρV (z) � u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, z)� u(x, x̂) � ρ(V (x̂)� V (z)) � ρV 0�(x̂)(x̂� z) � ρp̂(x̂� z),

where the second inequality follows from concavity of V and the third inequality follows
from Lemma 4 ii).

By the de�nition of u, and given that x 2 (aI , x̂], we have

u(x, z)� u(x, x̂) � aI
baC

(x̂� z) < p̂ρ(x̂� z),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, z)�u(x, x̂) � ρp̂(x̂�z). This leads to a contradiction

and establishes the desired result.
Consider (ii) z > ζ(x̂� x) + x̂. We have

V (x) = u(x, z) + ρV (z) � u(x, ζ(x̂� x) + x̂) + ρV (ζ(x̂� x) + x̂).

Rearranging the equation, we have

u(x, ζ(x̂� x) + x̂)� u(x, z) � ρ(V (z)� V (ζ(x̂� x) + x̂))

� ρV 0+(ζ(x̂� x) + x̂)(z � (ζ(x̂� x) + x̂))

� ρV 0+(x̂)(z � (ζ(x̂� x) + x̂)) � ρp̂(z � (ζ(x̂� x) + x̂))

4This is the range of (0; x̂] in the RSS model. When aI = 0, the optimal policy correspondence can
be further reduced to a function. For a complete characterization for x 2 (aI ; x̂] in the RSS model, see
Lemma 2 in [1].
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where the second inequality follows from concavity of V , the third inequality follows from
concavity of V and the fact that ζ(x̂� x) + x̂ � x̂ for x 2 (aI , x̂], and the last inequality
follows from Lemma 4 ii).

By the de�nition of u, and given that x 2 (aI , x̂], we have

u(x, ζ(x̂� x) + x̂)� u(x, z) � (1/b)(z � (ζ(x̂� x) + x̂)) > p̂ρ(z � (ζ(x̂� x) + x̂)),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, (ζ(x̂� x) + x̂))� u(x, z) � ρp̂(z � (ζ(x̂� x) + x̂)).

This leads to a contradiction and establishes the desired result.
Subregion (x̂, aC ]:
Suppose on the contrary there exists x 2 (x̂, aC ] and z 2 h(x) such that z /2

[ζ(x̂� x) + x̂, x̂]. There are two possible cases: (i) z > x̂; (ii) z < ζ(x̂� x) + x̂.
Consider (i) z > x̂. We have

V (x) = u(x, z) + ρV (z) � u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, x̂)� u(x, z) � ρ(V (z)� V (x̂)) � ρV 0+(x̂)(z � x̂) � ρp̂(z � x̂),

where the second inequality follows from concavity of V and the last inequality follows
from Lemma 4 ii).

By the de�nition of u, and given that x 2 (x̂, aC ], we have

u(x, x̂)� u(x, z) � (1/b)(z � x̂) > p̂ρ(z � x̂),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, x̂)�u(x, z) � ρp̂(z�x̂). This leads to a contradiction

and establishes the desired result.
Consider (ii) z < ζ(x̂� x) + x̂. We have

V (x) = u(x, z) + ρV (z) � u(x, ζ(x̂� x) + x̂) + ρV (ζ(x̂� x) + x̂).

Rearranging the equation, we have

u(x, z)� u(x, ζ(x̂� x) + x̂) � ρ(V (ζ(x̂� x) + x̂)� V (z))

� ρV 0�(ζ(x̂� x) + x̂)((ζ(x̂� x) + x̂)� z)

� ρV 0�(x̂)((ζ(x̂� x) + x̂)� z) � ρp̂((ζ(x̂� x) + x̂)� z)

where the second inequality follows from concavity of V , the third inequality follows
from concavity of V and the fact that ζ(x̂ � x) + x̂ � x̂ for x 2 (x̂, aC ], and the last
inequality follows from Lemma 4 ii).
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By the de�nition of u, and given that x 2 (x̂, aC ], we have

u(x, z)� u(x, ζ(x̂� x) + x̂) � aI
aCb

((ζ(x̂� x) + x̂)� z) < p̂ρ((ζ(x̂� x) + x̂)� z),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, z)� u(x, (ζ(x̂� x) + x̂)) � ρp̂((ζ(x̂� x) + x̂)� z).

This leads to a contradiction and establishes the desired result.
Subregion (aC , x̂/(1� d)):
Last, we consider (aC , x̂/(1�d)). Suppose on the contrary there exists x 2 (aC , x̂/(1�

d)) and z 2 h(x) such that z /2 [(1� d)x, x̂]. Then we must have z > x̂. By optimality of
z,

V (x) = u(x, z) + ρV (z) � u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, x̂)� u(x, z) � ρ(V (z)� V (x̂)) � ρV 0+(x̂)(z � x̂) � ρp̂(z � x̂),

where the second inequality follows from concavity of V , and the last inequality follows
from Lemma 4 ii).

By the de�nition of u, and given that x 2 (aC , x̂/(1� d)), we have

u(x, x̂)� u(x, z) � (1/b)(z � x̂) > p̂ρ(z � x̂),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, x̂)�u(x, z) � ρp̂(z�x̂). This leads to a contradiction

and establishes the desired result.
Proof of Corollary 1:

First, h(x̂) = fx̂g. If the initial stock is the golden rule stock, the system will stay
at the golden rule stock. To see the dynamics for the initial stock x 6= x̂, we rewrite
ζ < 1 more explicitly as

b

aC � aI
�(1�d) < 1, b�(1�d)(aC�aI) < aC�aI , [θaI�aC ]+[aI�(1�d)aC ] < 0,

where the last inequality suggests either (i) θaI < aC or (ii) aI < (1� d)aC (or both).
Consider (i) θaI < aC . Suppose x 2 [aI , x̂). We know G(x) = [x̂, ζ(x̂�x)+x̂]. Since

θaI < aC , G(x) � [x̂, θaI ] � [x̂, aC ], and therefore, G2(x) = [(1 � ζ2)x̂ + ζ2x, x̂]. Since
ζ 2 (0, 1) and x < x̂, we have (1�ζ2)x̂+ζ2x > x. This implies that limt!1G

2t(x) = fx̂g.
Since limx!x̂ ζ(x̂ � x) + x̂ = x̂, we must have limt!1G

2t+1(x) = fx̂g. This leads to the
desired conclusion that x converges to x̂ for x 2 [aI , x̂). Since limt!1G

t(x) = fx̂g for
any x 2 [aI , x̂), limt!1G

t(x) = fx̂g for any x 2 G([aI , x̂)) = [x̂, θaI ]. Further, since
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G([x̂/θ, aI ]) = [x̂, θaI ], the system must converge for any x in [x̂/θ, aI ]. Since we know
that h(x) = fθxg for x in (0, x̂/θ), for any x in (0, x̂/θ), after �nite periods, the stock
must enter the region [x̂/θ, x̂), thus leading to convergence. So far we have shown that
the system converges for any x in (0, θaI ]. According to Theorem 1, for any x greater
than x̂, after �nite periods, the stock must be below x̂, again according to what we have
shown, leading to convergence.

Consider (ii) aI < (1�d)aC . Suppose x 2 (x̂, aC ]. We know G(x) = [ζ(x̂�x)+x̂, x̂].
Since aI < (1 � d)aC , G(x) � [(1 � d)aC , x̂] � [aI , x̂], and therefore, G2(x) = [x̂, (1 �
ζ2)x̂ + ζ2x]. Since ζ 2 (0, 1) and x > x̂, we have (1� ζ2)x̂ + ζ2x < x. This implies that
limt!1G

2t(x) = fx̂g. Since limx!x̂ ζ(x̂ � x) + x̂ = x̂, we must have limt!1G
2t+1(x) =

fx̂g. This leads to the desired conclusion that x converges to x̂ for x 2 (x̂, aC ]. Since
limt!1G

t(x) = fx̂g for any x 2 (x̂, aC ], limt!1G
t(x) = fx̂g for any x 2 G((x̂, aC ]) =

[(1�d)aC , x̂]. Further, since G([aC , x̂/(1�d))) = [(1�d)aC , x̂], the system must converge
for any x in [aC , x̂/(1�d)). Since we know that h(x) = f(1�d)xg for x in [x̂/(1�d),1), for
any x in [x̂/(1�d),1), after �nite periods, the stock must enter the region ([x̂, x̂/(1�d)),
thus leading to convergence. So far we have shown that the system converges for any x
in [(1�d)aC ,1). According to Theorem 1, for any x less than x̂, after �nite periods, the
stock must be above x̂, again according to what we have shown, leading to convergence.

We now have shown for any x, the optimal policy leads to a convergence to the
golden rule stock.
Proof of Proposition 3:

Consider the subregion (0, aI ].
Suppose on the contrary there exists x 2 (0, aI ] and z 2 h(x) such that z 6= θx.

Then we must have z < θx. By the optimality of z,

V (x) = u(x, z) + ρV (z) � u(x, θx) + ρV (θx).

Rearranging the equation, we have

u(x, z)�u(x, θx) � ρ(V (θx)�V (z)) � ρV 0�(θx)(θx� z) � ρV 0�(x̂)(θx� z) � ρp̂(θx� z),

where the second inequality follows from concavity of V , the third inequality follows from
concavity of V and the fact that θaI � x̂ for ζ � 0 (Lemma 5), and the last inequality
follows from Lemma 4 ii).

By the de�nition of u, and given that x � aI , we have

u(x, z)� u(x, θx) = (1/aC)[x� (aI/b)(z � (1� d)x)] =
aI
baC

(θx� z) < p̂ρ(θx� z),

where the last inequality follows from Lemma 2. Since we have shown that u(x, z) �
u(x, θx) � ρp̂(θx� z). This leads to a contradiction and establishes the desired result.
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Consider the subregion [aC ,1).
Suppose on the contrary there exists x � aC and z 2 h(x) such that z 6= (1� d)x.

Then we must have z > (1� d)x. By the optimality of z,

V (x) = u(x, z) + ρV (z) � u(x, (1� d)x) + ρV ((1� d)x).

Rearranging the equation, we have

u(x, (1� d)x)� u(x, z) � ρ(V (z)� V ((1� d)x)) � ρV 0+((1� d)x)(z � (1� d)x)

� ρV 0+(x̂)(z � (1� d)x) � ρp̂(z � (1� d)x),

where the second inequality follows from concavity of V , the third inequality follows
from concavity of V and the fact that x̂ � (1� d)aC � (1� d)x (Lemma 5), and the last
inequality follows from Lemma 4 ii).

By the de�nition of u, and given that x � aC , we have

u(x, (1� d)x)� u(x, z) = (z � (1� d)x)/b > p̂ρ(z � (1� d)x),

where the last inequality follows from Lemma 2. Since we have shown that u(x, (1 �
d)x)�u(x, z) � ρp̂(z�(1�d)x). This leads to a contradiction and establishes the desired
result.

Consider the subregion (aI , x̂].
Suppose on the contrary there exists x 2 (aI , x̂] and z 2 h(x) such that z /2

[ζ(x̂� x) + x̂, x̂]. There are two possible cases: (i) z > x̂; (ii) z < ζ(x̂� x) + x̂.
Consider (i) z > x̂. We have

V (x) = u(x, z) + ρV (z) � u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, x̂)� u(x, z) � ρ(V (z)� V (x̂)) � ρV 0+(x̂)(z � x̂) � ρp̂(z � x̂),

where the second inequality follows from concavity of V and the last inequality follows
from Lemma 4 ii).

By the de�nition of u, and given that x 2 (aI , x̂] and ζ � 0, we have

u(x, x̂)� u(x, z) � (1/b)(z � x̂) > p̂ρ(z � x̂),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, x̂)�u(x, z) � ρp̂(z�x̂). This leads to a contradiction

and establishes the desired result.
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Consider (ii) z < ζ(x̂� x) + x̂. We have

V (x) = u(x, z) + ρV (z) � u(x, ζ(x̂� x) + x̂) + ρV (ζ(x̂� x) + x̂).

Rearranging the equation, we have

u(x, z)� u(x, ζ(x̂� x) + x̂) � ρ(V (ζ(x̂� x) + x̂)� V (z))

� ρV 0�(ζ(x̂� x) + x̂)((ζ(x̂� x) + x̂)� z)

� ρV 0�(x̂)((ζ(x̂� x) + x̂)� z) � ρp̂((ζ(x̂� x) + x̂)� z)

where the second inequality follows from concavity of V , the third inequality follows from
concavity of V and the fact that ζ(x̂� x) + x̂ � x̂ for x 2 (aI , x̂], and the last inequality
follows from Lemma 4 ii).

By the de�nition of u, and given that x 2 (aI , x̂], we have

u(x, z)� u(x, ζ(x̂� x) + x̂) � aI
aCb

((ζ(x̂� x) + x̂)� z) < p̂ρ((ζ(x̂� x) + x̂)� z),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, z)� u(x, (ζ(x̂� x) + x̂)) � ρp̂((ζ(x̂� x) + x̂)� z).

This leads to a contradiction and establishes the desired result.
Last, consider the subregion (x̂, aC).
Suppose on the contrary there exists x 2 (x̂, aC) and z 2 h(x) such that z /2

[x̂, ζ(x̂� x) + x̂]. There are two possible cases: (i) z < x̂; (ii) z > ζ(x̂� x) + x̂.
Consider (i) z < x̂. We have

V (x) = u(x, z) + ρV (z) � u(x, x̂) + ρV (x̂).

Rearranging the equation, we have

u(x, z)� u(x, x̂) � ρ(V (x̂)� V (z)) � ρV 0�(x̂)(x̂� z) � ρp̂(x̂� z),

where the second inequality follows from concavity of V and the third inequality follows
from Lemma 4 ii).

By the de�nition of u, and given that x 2 (x̂, aC) and ζ � 0, we have

u(x, z)� u(x, x̂) � aI
baC

(x̂� z) < p̂ρ(x̂� z),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, z)�u(x, x̂) � ρp̂(x̂�z). This leads to a contradiction

and establishes the desired result.
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Consider (ii) z > ζ(x̂� x) + x̂. We have

V (x) = u(x, z) + ρV (z) � u(x, ζ(x̂� x) + x̂) + ρV (ζ(x̂� x) + x̂).

Rearranging the equation, we have

u(x, ζ(x̂� x) + x̂)� u(x, z) � ρ(V (z)� V (ζ(x̂� x) + x̂))

� ρV 0+(ζ(x̂� x) + x̂)(z � (ζ(x̂� x) + x̂))

� ρV 0+(x̂)(z � (ζ(x̂� x) + x̂)) � ρp̂(z � (ζ(x̂� x) + x̂))

where the second inequality follows from concavity of V , the third inequality follows
from concavity of V and the fact that ζ(x̂ � x) + x̂ � x̂ for x 2 (x̂, aC), and the last
inequality follows from Lemma 4 ii).

By the de�nition of u, and given that x 2 (x̂, aC) we have

u(x, ζ(x̂� x) + x̂)� u(x, z) � (1/b)(z � (ζ(x̂� x) + x̂)) > p̂ρ(z � (ζ(x̂� x) + x̂)),

where the last inequality follows from Lemma 2.
Since we have shown that u(x, (ζ(x̂� x) + x̂))� u(x, z) � ρp̂(z � (ζ(x̂� x) + x̂)).

This leads to a contradiction and establishes the desired result.
Proof of Proposition 4:

It has been covered in Proposition 3 for x 2 (0, aI ] [ [aC ,1). We only need to
consider x 2 (aI , aC). Suppose x is in (aI , x̂]. Since ζ > �1 and ζ � 0, we have x <

ζ(x̂ � x) + x̂ � x̂, which implies ζ(x̂ � x) + x̂ 2 (aI , aC). Similarly, if x 2 (x̂, aC), we
must have ζ(x̂ � x) + x̂ 2 (aI , aC). This suggests that for any x 2 (aI , aC), if we follow
the policy such that x0 = ζ(x̂ � x) + x̂, the stock of the next period is also in (aI , aC)
and therefore, the policy that fully utilizes resources for x 2 (aI , aC) leads to zero total
value loss. Any deviation from this policy leads to a positive value loss for x 2 (aI , aC),
and therefore, it is not optimal. Hence, according to Lemma 8, h(x) = fζ(x̂ � x) + x̂g
for x 2 (aI , aC).
Proof of Proposition 5:

Since ζ is in (0, 1], or more explicitly, b(aC � aI) � (1 � d) � 1, rearranging the
terms, we must have (aC � θaI) + ((1� d)aC � aI) � 0, which implies that at least one
of the following two inequalities holds: (A) aC � θaI ; (B) (1� d)aC � aI . Therefore, we
consider three possible cases.

(i) Both (A) and (B) hold: aC � θaI and (1� d)aC � aI .

This is the simplest case. Consider x 2 [aI , aC ]. Since f(x) � ζ(x̂ � x) � x̂) 2
[aC(1�d), aIθ] � [aI , aC ], the sequence of the capital stock generated by f , ff t(x)g1t=1, is
bounded by [aI , aC ]. Further, since we know from Lemma 1 that the value loss associated
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with (x, f(x)) is zero for x 2 [aI , aC ], the sum of the discounted value losses associated
with ff t(x)g1t=1 is zero. Stating from x, any program that deviates from ff t(x)g1t=1 yields
a positive value loss. According to Lemma 8, h(x) = fζ(x̂� x)� x̂)g for x 2 [aI , aC ].

Now consider x 2 (x̂/θ, aI). According to Theorem 1, we know h(x) � [x̂, θx] �
[x̂, θaI ] � [x̂, aC ]. Since we know that the total value loss for the optimal program starting
from x 2 [aI , aC ] is always zero, we just need to check the one-period value loss for (x, x0)
with x 2 (x̂/θ, aI) and x0 2 [x̂, θx]:

δ�(x, x0) = u(x̂, x̂) + (ρ� 1)p̂x̂� u(x, x0)� p̂(ρx0 � x)

= u(x̂, x̂) + (ρ� 1)p̂x̂� (1/aC)(x� (aI/b)(x0 � (1� d)x))� p̂(ρx0 � x).

Then we have
∂δ�(x, x0)

∂x0
=

aI
aCb
� p̂ρ < 0,

where the inequality follows from Lemma 2. Since the one-period value loss strictly
decreases with x0, it attains its unique minimum and therefore the total value loss attains
its unique minimum, when x0 attains its unique maximum, which implies that h(x) =
fθxg for x 2 (x̂/θ, aI).

Consider x 2 (aC , x̂/(1 � d)). According to Theorem 1, we know h(x) � [(1 �
d)x, x̂] � [(1� d)aC , x̂] � [aI , x̂]. Since we know that the total value loss for the optimal
program starting from x 2 [aI , aC ] is always zero, we just need to check the one-period
value loss for (x, x0) with x 2 (aC , x̂/(1� d)) and x0 2 [(1� d)x, x̂] :

δ�(x, x0) = u(x̂, x̂) + (ρ� 1)p̂x̂� (1� (1/b)(x0 � (1� d)x))� p̂(ρx0 � x).

Then we have
∂δ�(x, x0)

∂x0
=

1
b
� p̂ρ > 0,

where the inequality follows from Lemma 2. Since the one-period value loss strictly
increases with x0, it attains its unique minimum and therefore the total value loss attains
its unique minimum, when x0 attains its unique minimum, which implies h(x) = f(1 �
d)xg for x 2 (aC , x̂/(1� d)).

Combined with the characterization for x 2 (0, x̂/θ][ [x̂/(1�d),1) as in Theorem
1, we have obtained the desired result for case (i).

(ii) Only (B) holds: aC < θaI and (1� d)aC � aI .

The complication arises from the fact that aC < aIθ. As aC < aIθ, f(aI) =
ζ(x̂ � aI) + x̂ = aIθ > aC , which means, f(aI) /2 [aI , aC ]. The total value loss could be
strictly positive even if we follow the policy f with an initial stock starting from aI .

Consider x 2 [x̂, aC ]. Since aC(1� d) � aI , f(x) = ζ(x̂� x) + x̂ 2 [(1� d)aC , x̂] �
[aI , x̂]. Since f(x) 2 [aI , x̂], f 2(x) = ζ2x + (1� ζ2)x̂ 2 [x̂, x] � [x̂, aC ], where ζ2x + (1�
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ζ2)x̂ � x follows from ζ 2 (0, 1] and x � x̂. Therefore, ff t(x)g1t=1, is bounded by [aI , aC ].
It follows from the argument for case (i) that h(x) = fζ(x̂� x) + x̂g for x 2 [x̂, aC ].

Consider x 2 [aC(ζ � d)/ζ, x̂). Since aC < aIθ, aC(ζ � d)/ζ > aI . Since f(x) 2
(x̂, aC ] with δ�(x, f(x)) = 0 and we have shown that the optimal policy function leads
to the total value loss being zero for any initial stock in (x̂, aC ], we must have h(x) =
fζ(x̂� x) + x̂g for x 2 [aC(ζ � d)/ζ, x̂).

Consider x 2 (aC , x̂/(1 � d)). According to Theorem 1, we know h(x) � [(1 �
d)x, x̂] � [(1� d)aC , x̂] � [aC(ζ � d)/ζ, x̂], where [(1� d)aC , x̂] � [aC(ζ � d)/ζ, x̂] follows
from ζ 2 (0, 1]. Then it follows from the argument for case (i) that h(x) = f(1 � d)xg
for x 2 (aC , x̂/(1� d)).

Consider x 2 (x̂/θ, aC/θ]. Since aC < aIθ, aC/θ < aI . According to Theorem 1,
we know h(x) � [x̂, θx] � [x̂, aC ]. Again, it follows from the argument for case (i) that
h(x) = fθxg for x 2 (x̂/θ, aC/θ].

Last, consider x 2 (aC/θ, aC(ζ�d)/ζ).According to Theorem 1, h(x) � [x̂,minfθx, ζ(x̂�
x) + x̂g]. Since x is in (aC/θ, aC(ζ � d)/ζ), we have [x̂, aC ] � [x̂,minfθx, ζ(x̂� x) + x̂g].
Let x0 2 [x̂,minfθx, ζ(x̂ � x) + x̂g]. If x0 � aC , then the total value loss is simply
the one period value loss δ�(x, x0). Following the argument for case (i), the one pe-
riod value loss is minimized when x0 attains its maximum, aC . Hence, we must have
h(x) � [aC ,minfθx, ζ(x̂� x) + x̂g].

Combined with the characterization for x 2 (0, x̂/θ] [ [x̂/(1 � d),1) in Theorem
1, we have obtained the desired result for case (ii).

(iii) Only (A) holds: aC � θaI and (1� d)aC < aI .

The complication for this case arises from the fact that aC(1� d) < aI . As aC(1�
d) < aI , f(aC) = ζ(x̂ � aC) + x̂ = (1 � d)aC < aI , which means f(aC) /2 [aI , aC ]. The
total value loss could be strictly positive even if we follow the policy f with an initial
stock starting from aC .

Consider x 2 [aI , x̂]. Since aC � aIθ, it follows symmetrically from the argument
for [x̂, aC ] in case (ii) that h(x) = fζ(x̂� x) + x̂g for x 2 [aI , x̂].

Consider x 2 (x̂, aC(1+(1�d)/ζ)�aI/ζ]. Since aC(1�d) < aI , aC(1+(1�d)/ζ)�
aI/ζ < aC . Then it follows symmetrically from the argument for [aC(ζ � d)/ζ, x̂) in case
(ii) that h(x) = fζ(x̂� x) + x̂g for x 2 (x̂, aC(1 + (1� d)/ζ)� aI/ζ].

Consider x 2 (x̂/θ, aI). According to Theorem 1, h(x) � [x̂, θx] � [x̂, θaI ] �
[x̂, aC(1+(1�d)/ζ)�aI/ζ], where the last � holds because θaI � aC(1+(1�d)/ζ)�aI/ζ,
which itself follows from f(θaI) � aI (due to ζ � 1), f(aC(1 + (1� d)/ζ)� aI/ζ) = aI ,
and f being decreasing. Then it follows from the argument for case (i) that h(x) = fθxg
for x 2 (x̂/θ, aI).

Consider x 2 (aI/(1�d), x̂/(1�d)). Since aC(1�d) < aI , aI/(1�d) > aC .According
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to Theorem 1, h(x) � [(1� d)x, x̂] � [aI , x̂]. It then follows from the argument for case
(i) that h(x) = f(1� d)xg for x 2 (aI/(1� d), x̂/(1� d)).

Last, consider x 2 (aC(1 + (1�d)/ζ)�aI/ζ, aI/(1�d)). According to Theorem 1,
h(x) � [maxf(1�d)x, ζ(x̂�x)+ x̂g, x̂]. Since x is in (aC(1+(1�d)/ζ)�aI/ζ, aI/(1�d)),
we have [aI , x̂] � [maxf(1 � d)x, ζ(x̂ � x) + x̂g, x̂]. If x0 � aI , then total value loss is
simply the one period value loss. Following the argument for case (i), the one period
value loss is minimized when x0 attains its minimum, aI . Then we must have h(x) �
[maxf(1� d)x, ζ(x̂� x) + x̂g, aI ].

Combined with the characterization for x 2 (0, x̂/θ] [ [x̂/(1 � d),1) in Theorem
1, we have obtained the desired result for case (iii).
Proof of Theorem 2:

We �rst show the �rst part of the proposition concerning the de�nition and the
order of �ρt. Let ft(ρ) � aCb(1 � d)tρt+1 � (aC � aI)aIζρ � aI(aC � aI). Since ft(0) < 0
and ft(ρ) > 0 for ρ su�ciently large, there must exist at least one positive root to the
equation ft(ρ) = 0. Suppose there are two di�erent roots, denoted by ρ1 and ρ2. Without
loss of generality, let ρ1 > ρ2. Then we have

aCb(1� d)tρt+1
1 � (aC � aI)aIζρ1 � aI(aC � aI) = 0

aCb(1� d)tρt+1
2 � (aC � aI)aIζρ2 � aI(aC � aI) = 0,

which implies

aCb(1� d)t(ρt+1
1 � ρt+1

2 ) = (aC � aI)aIζ(ρ1 � ρ2)

, (aC � aI)aIζ =
aCb(1� d)t(ρt+1

1 � ρt+1
2 )

ρ1 � ρ2
> aCb(1� d)tρt2,

where the last equality follows from ρ1 > ρ2. Since (aC�aI)aIζ > aCb(1�d)tρt2, aCb(1�
d)tρt+1

2 � (aC � aI)aIζρ2� aI(aC � aI) < 0, leading to the contradiction. Hence, �ρt is the
unique positive root, being well-de�ned. Further, since f1(1/θ) = baC(1� d� θ)/θ2 < 0
and we know f1(ρ) is positive for ρ su�ciently large, �ρ1 > 1/θ. Since ft(1/(1 � d)) =
b(aC � aI)/(1� d) > 0 and we know ft(0) < 0, �ρt < 1/(1� d) for any t.

By de�nition, we have

ft+1(�ρt+1) = 0, aCb(1� d)t+1 �ρt+2
t+1 � (aC � aI)aIζ �ρt+1 � aI(aC � aI) = 0

ft(�ρt) = 0, aCb(1� d)t�ρt+1
t � (aC � aI)aIζ �ρt � aI(aC � aI) = 0.

Since �ρt+1 < 1/(1� d), or equivalently, �ρt+1(1� d) < 1,

ft+1(�ρt) = aCb(1� d)t+1 �ρt+2
t � (aC � aI)aIζ �ρt � (aC � aI)aI < ft(�ρt) = 0.
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Further, we know ft(ρ) > 0 for ρ su�ciently large, so �ρt+1 > �ρt.
Now we turn to characterizing the optimal policy correspondence for x 2 (aC/θ, aC(ζ�

d)/ζ).
Pick the smallest integer t0 such that aIθ(1 � d)t0 < aC . By construction, t0 � 1

and aIθ(1 � d)t0�1 � aC , so aIθ(1 � d)t0 � (1 � d)aC � aC(ζ � d)/ζ, where the last
inequality follows from 0 < ζ � 1.

Pick x 2 (aC/θ, aC(ζ�d)/ζ). According to case (ii) in Proposition 5, the stock for
the next period, x0, has to be in [aC ,minfζ(x̂�x)+x̂, θxg], so x0 � aIθ. Pick the smallest
integer t1 such that (1 � d)t1x0 < aC . Since x0 � aIθ, by construction, 1 � t1 � t0 and
(1� d)t1�1x0 � aC , so (1� d)t1x0 � (1� d)aC � aC(ζ � d)/ζ.

For any stock above aC , notice that the optimality mandates the stock in the
following period to shirk by (1� d) times. Following x0, the stock for the next t1 periods
are given by f(1 � d)tx0gt1t=1. Since (1 � d)t1x0 � [aC(ζ � d)/ζ, aC), after t1 + 1 periods,
the total value loss of the remaining periods will be zero, so we focus on the total value
loss for the �rst t1 + 1 periods.

Consider the (t1 + 1)-period value loss associated with (x, x0) and f((1�d)tx0, (1�
d)t+1x0)gt=t1�1

t=0 .

`t1(x0) � δ�(x, x0) +
t1�1X
t=0

ρt+1δ�((1� d)tx0, (1� d)t+1x0)

=
1� ρt1
1� ρ

u(x̂, x̂) + (ρt1 � 1)p̂x̂� (1/aC)(x� (aI/b)(x0 � (1� d)x))

�ρ� ρ
t1+1

1� ρ
� p̂(ρt1+1(1� d)t1x0 � x)

Then we have

∂`t1(x0)
∂x0

=
aI
baC
� p̂ρt1+1(1� d)t1 =

aI
baC
� ρt1+1(1� d)t1

(aC � aI)(1 + ρζ)
=

�ft1(ρ)
baC(aC � aI)(1 + ρζ)

.

By construction of �ρt1 , we know ∂`t1(x0)/∂x0 > 0 if ρ < �ρt1 ; ∂`t1(x0)/∂x0 = 0 if
ρ = �ρt1 ; ∂`t1(x0)/∂x0 < 0 if ρ > �ρt1 .

Consider two possible cases: (1) t0 = 1; (2) t0 > 1.
For (1), t0 = 1, so we must have t1 = 1. Hence, we only need to consider the

two-period value loss. If ρ > �ρ1, the total value loss attains its minimum when x0 attains
its maximum, suggesting that h(x) = minfζ(x̂ � x) + x̂, θxg. If ρ = �ρ1, then the total
value loss is constant with respect to x0, so h(x) = [aC ,minfζ(x̂�x) + x̂, θxg]. If ρ < �ρ1,
the total value loss attains its minimum when x0 attains its minimum, which implies that
h(x) = faCg.
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For (2), (1/θ,1) is partitioned by f�ρtgt0t=1 : (1/θ, �ρ1), f�ρ1g, (�ρ1, �ρ2),..., (�ρt0�1, �ρt0),
f�ρt0g, and (�ρt0 ,1).

Consider ρ < �ρ1. The two-period value loss is minimized and total value loss is
equal to the two-period value loss when x0 = aC , so h(x) = faCg.

Consider ρ = �ρt1 for t1 taking value from f1, 2, ..., t0g. The (t1 + 1)-period value
loss and also the total value loss is constant with respect to x0 for a �xed t1. Since
ρ = �ρt1 , ρ > �ρt01 for any t01 < t1 and ρ < �ρt01 for any t01 > t1. Since ρ > �ρt01 for
any t01 < t1, the total value loss decreases with x0 for t01 < t1, or equivalently, for
x0(1 � d)t1�1 < aC .5 Since ρ < �ρt01 for any t01 > t1, the total value loss increases
with x0 for t01 > t1, or equivalently, for x0(1 � d)t1 � aC . If minfζ(x̂ � x) + x̂, θxg >
aC/(1 � d)t1 , then h(x) = [aC/(1 � d)t1�1, aC/(1 � d)t1 ]. If minfζ(x̂ � x) + x̂, θxg 2
[aC/(1 � d)t1�1, aC/(1 � d)t1 ], then h(x) = [aC/(1 � d)t1�1,minfζ(x̂ � x) + x̂, θxg]. If
minfζ(x̂ � x) + x̂, θxg < aC/(1 � d)t1 , then h(x) = minfζ(x̂ � x) + x̂, θxg. In sum, for
ρ = �ρt1 , h(x) = [minfζ(x̂�x) + x̂, θx, aC/(1�d)t�1g,minfζ(x̂�x) + x̂, θx, aC/(1�d)tg].

Consider ρ 2 (�ρt1 , �ρt1+1) for t1 taking value from f1, ..., t0 � 1g. The (t1 + 1)-
period value loss and also the total value loss is minimized when x0 attains its maximum
for a �xed t1. Since ρ < �ρt1+1, ρ < �ρt01 for any t01 > t1, which implies that the total
value loss increases with x0 for t01 > t1, or equivalently, for x0(1 � d)t1 � aC . Since
ρ > �ρt1 , ρ > �ρt01 for any t01 < t1, which implies that the total value loss decreases
with x0 for t01 < t1, or equivalently, for x0(1 � d)t1�1 < aC . Hence, we have h(x) =
minfζ(x̂� x) + x̂, θx, aC/(1� d)t1g.

Last, consider ρ > �ρt0 . Since we know �ρt0 � �ρt for any t = 1, 2, ..., t0, ρ > �ρt1 for
any t1. This suggests that the (t1 + 1)-period value loss and also the total value loss
decreases with x0 for any given t1. Then the total value loss is minimized when x0 attains
its maximum. Hence, h(x) = minfζ(x̂� x) + x̂, θxg.

We have now obtained the desired conclusion.
Proof of Theorem 3:

We �rst show the �rst part of the proposition concerning the de�nition and the
order of ~ρt. Let ft(ρ) � bθtρt+1�(aC�aI)ζρ�(aC�aI). Since ft(0) < 0 and ft(ρ) > 0 for
ρ su�ciently large, there must exist at least one positive root to the equation ft(ρ) = 0.
Suppose there are two di�erent roots, denoted by ρ1 and ρ2. Without loss of generality,
let ρ1 > ρ2. Then we have

bθtρt+1
1 � (aC � aI)ζρ1 � (aC � aI) = 0

bθtρt+1
2 � (aC � aI)ζρ2 � (aC � aI) = 0,

5Here we implicitly rely on the continuity of the value function.
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which implies

bθt(ρt+1
1 � ρt+1

2 ) = (aC � aI)ζ(ρ1 � ρ2), (aC � aI)ζ =
bθt(ρt+1

1 � ρt+1
2 )

ρ1 � ρ2
> bθtρt2,

where the last equality follows from ρ1 > ρ2. Since (aC � aI)ζ > bθtρt2, bθtρt+1
2 � (aC �

aI)ζρ2 � (aC � aI) < 0, leading to the contradiction. Hence, ~ρt is the unique positive
root, being well-de�ned. Further, since ft(1/θ) = �b(aC � aI)/(aIθ) < 0 and we know
ft(ρ) is positive for ρ su�ciently large, ~ρt > 1/θ.

By de�nition, we have

ft+1(~ρt+1) = 0, bθt+1 ~ρt+2
t+1 � (aC � aI)ζ ~ρt+1 � (aC � aI) = 0

ft(~ρt) = 0, bθt~ρt+1
t � (aC � aI)ζ ~ρt � (aC � aI) = 0.

Since ~ρt+1 > 1/θ, or equivalently, ~ρt+1θ > 1,

ft(~ρt+1) = bθt~ρt+1
t+1 � (aC � aI)ζ ~ρt+1 � (aC � aI) < ft+1(~ρt+1) = 0.

Further, we know ft(ρ) > 0 for ρ su�ciently large, so ~ρt+1 < ~ρt.
Now we turn to characterizing the optimal policy correspondence for x 2 (aC(1 +

(1� d)/ζ)� aI/ζ, aI/(1� d)).
Pick the smallest integer t0 such that θt0aC(1 � d) > aI . By construction, t0 � 1

and θt0�1aC(1 � d) � aI , so θt0aC(1 � d) � θaI � aC(1 + (1 � d)/ζ) � aI/ζ, where the
last inequality follows from ζ � 1 and aIθ � aC (also see the proof for Proposition 5).

Pick x 2 (aC(1+(1�d)/ζ)�aI/ζ, aI/(1�d)). According to case (iii) in Proposition
5, the stock for the next period, x0, has to be in [maxfζ(x̂ � x) + x̂, (1 � d)xg, aI ], so
x0 � aC(1� d). Pick the smallest integer t1 such that θt1x0 > aI . Since x0 � aC(1� d),
by construction, 1 � t1 � t0 and θt1�1aC(1 � d) � aI , so θt1aC(1 � d) � θaI � aC(1 +
(1�d)/ζ)�aI/ζ. For any stock below aI , notice that the optimality mandates the stock
in the following period to grow up by θ times. Following x0, the stock for the next t1
periods are given by fθtx0gt1t=1. Since θt1x0 � (aI , aC(1 + (1 � d)/ζ) � aI/ζ], after t1 + 1
periods, the total value loss of the remaining periods will be zero, so we focus on the
total value loss for the �rst t1 + 1 periods.

Consider the (t1+1)-period value loss associated with (x, x0) and f(θtx0, θt+1x0)gt=t1�1
t=0 .

`t1(x0) � δ�(x, x0) +
t1�1X
t=0

ρt+1δ�(θtx0, θt+1x0)

=
1� ρt1
1� ρ

u(x̂, x̂) + (ρt1 � 1)p̂x̂� (1� (1/b)(x0 � (1� d)x))� p̂(ρt1+1θt1x0 � x)
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Then we have

∂`t1(x0)
∂x0

=
1
b
� p̂ρt1+1θt1 =

1
b
� ρt1+1θt1

(aC � aI)(1 + ρζ)
=

�ft1(ρ)
b(aC � aI)(1 + ρζ)

.

By construction of ~ρt1 , we know ∂`t1(x0)/∂x0 > 0 if ρ < ~ρt1 ; ∂`t1(x0)/∂x0 = 0 if
ρ = ~ρt1 ; ∂`t1(x0)/∂x0 < 0 if ρ > ~ρt1 .

Consider two possible cases: (1) t0 = 1; (2) t0 > 1.
For (1), t0 = 1, so t1 = 1. Hence, we only need to consider the two-period value

loss. If ρ < ~ρ1, the total value loss attains its minimum when x0 attains its minimum,
suggesting that h(x) = maxfζ(x̂� x) + x̂, (1� d)xg. If ρ = ~ρ1, then the total value loss
is constant with respect to x0, so h(x) = [maxfζ(x̂� x) + x̂, (1� d)xg, aI ]. If ρ > ~ρ1, the
total value loss attains its minimum when x0 attains its maximum, which implies that
h(x) = faIg.

For (2), (1/θ,1) is partitioned by f~ρtgt0t=1 : (1/θ, ~ρt0), f~ρt0g, (~ρt0 , ~ρt0�1),..., (~ρ2, ~ρ1),
f~ρ1g, and (~ρ1,1).

Consider ρ > ~ρ1. The two-period value loss is minimized and total value loss is
equal to the two-period value loss when x0 = aI , so h(x) = faIg.

Consider ρ = ~ρt1 for t1 taking value from f1, 2, ..., t0g. The (t1 + 1)-period value
loss and also the total value loss is constant with respect to x0 for a �xed t1. Since
ρ = ~ρt1 , ρ > ~ρt01 for any t01 > t1 and ρ < ~ρt01 for any t01 < t1. Since ρ > ~ρt01 for
any t01 > t1, the total value loss decreases with x0 for t01 > t1, or equivalently, for
x0θt1 � aI .6 Since ρ < ~ρt01 for any t01 < t1, the total value loss increases with x0 for
t01 < t1, or equivalently, for x0θt1�1 > aI . If maxfζ(x̂ � x) + x̂, (1 � d)xg < aI/θ

t1 ,

then h(x) = [aI/θt1 , aI/θt1�1]. If maxfζ(x̂ � x) + x̂, (1 � d)xg 2 [aI/θt1 , aI/θt1�1], then
h(x) = [maxfζ(x̂�x) + x̂, (1�d)xg, aI/θt1�1]. If maxfζ(x̂�x) + x̂, (1�d)xg > aI/θ

t1�1,

then h(x) = maxfζ(x̂� x) + x̂, (1� d)xg. In sum, for ρ = ~ρt1 , h(x) = [maxfζ(x̂� x) +
x̂, (1� d)x, aI/θt1g,maxfζ(x̂� x) + x̂, (1� d)x, aI/θt1�1g].

Consider ρ 2 (~ρt1+1, ~ρt1) for t1 taking value from f1, ..., t0� 1g. The (t1 + 1)-period
value loss and also the total value loss is minimized when x0 attains its minimum for
a �xed t1. Since ρ > ~ρt1+1, ρ > ~ρt01 for any t01 > t1, which implies that the total value
loss decreases with x0 for t01 > t1, or equivalently, for x0θt1 � aI . Since ρ < ~ρt1 , ρ < ~ρt01
for any t01 < t1, which implies that the total value loss increases with x0 for t01 < t1, or
equivalently, for x0θt1�1 > aI . Hence, we have h(x) = maxfζ(x̂�x)+ x̂, (1�d)x, aI/θt1g.

Last, consider ρ < ~ρt0 . Since we know ~ρt0 � ~ρt for any t = 1, 2, ..., t0, ρ < ~ρt1 for
any t1. This suggests that the (t1 + 1)-period value loss and also the total value loss
increases with x0 for any given t1. Then the total value loss is minimized when x0 attains
its minimum. Hence, h(x) = maxfζ(x̂� x) + x̂, (1� d)xg.

6Here we implicitly rely on the continuity of the value function.
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We have now obtained the desired conclusion.

2 Additional Illustration
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Figure 1: Illustration of Theorem 3
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