Criminal Network Formation and Optimal Detection Policy: The Role of Cascade of Detection

Liuchun Deng¹ and Yufeng Sun²

Johns Hopkins University

Chinese University of Hong Kong

Criminal networks are widely observed

- Mafia
- Terrorist networks
- Corruption networks

イロト イヨト イヨト イヨト

- What is the optimal detection policy in the presence of endogenous network formation among criminals?
- How does the cascade of detection affect criminal network formation and social welfare?

- 3 >

• We consider two dimensions of detection policy

- Allocation of detection resource
- Degree of cascade
- Higher degree of cascade of detection may backfire
- Optimal budget allocation is highly asymmetric among ex ante identical agents

Our timing structure follows Baccara and Bar-Issac (2008)

Model

- **1** Set of players: $N = \{1, 2, ..., n\}$
- 2 Probability of player *i* being directly detected: $\beta_i \in [0, 1]$
- **③** The government allocates a fixed detection budget $B \in \mathbb{R}_+$

$$\sum_{i=1}^{n} \beta_i \leq B$$

Players are ranked such that

$$\beta_1 \leq \beta_2 \leq \ldots \leq \beta_n$$

$$b \equiv (\beta_1, \beta_2, ..., \beta_n)$$

- G: set of n-by-n (0, 1)-matrices with zeros on the diagonal
- G_i : set of *n*-by-1 (0, 1)-vectors with *i*-th element to be zero
- $g_i \in G_i$: linking decision by player *i*
- $g \in G$: A collection of linking choices by all players
- \overline{G} : set of *n*-by-*n* symmetric (0, 1)-matrices with zeros on the diagonal
- Link formation requires bilateral agreement. For any $g \in G$, g induces a criminal network $\overline{g}(g) \in \overline{G}$ such that

$$\overline{g}(g) = \min(g, g')$$

No explicit linking cost

- Distance *d_{ij}* between player *i* and *j* is the length of the shortest path connecting *i* and *j*
- Probability of player i not being detected

$$p_i(\overline{g}; \beta, d) = \prod_{j \in N, d_{ij} \leq d} (1 - \beta_j)$$

with

- $d = 0 \rightarrow$ no cascade of detection
- $d = 1 \rightarrow$ limited cascade of detection
- $d = n \rightarrow$ full cascade of detection

• $p_1(\overline{g}; \beta, 0) = 1 - \beta_1$

•
$$p_1(\overline{g}; \beta, 1) = \prod_{i=1}^4 (1 - \beta_i)$$

•
$$p_1(\overline{g}; \beta, 6) = \prod_{i=1}^6 (1 - \beta_i)$$

Deng & Sun (JHU & CUHK)

- Given $\overline{g} \in \overline{G}$, player *i* chooses effort level $x_i \in \mathbb{R}_+$
- Player i's payoff

$$\pi_i(\boldsymbol{x}, \overline{\boldsymbol{g}}; \beta, \lambda, \boldsymbol{d}) = \boldsymbol{p}_i(\overline{\boldsymbol{g}}; \beta, \boldsymbol{d}) \cdot \left(\boldsymbol{x}_i - \frac{1}{2} \boldsymbol{x}_i^2 + \lambda \sum_{j=1}^n \overline{\boldsymbol{g}}_{ij} \boldsymbol{x}_i \boldsymbol{x}_j \right)$$

where $\lambda \in (0, \frac{1}{n-1})$ and $x \equiv (x_1, x_2, ..., x_n)$

- 3 >

- X: set of all mappings from \overline{G} to \mathbb{R}_+
- Player *i*'s strategy is a pair of a linking choice g_i ∈ G_i and an effort mapping x_i(·) ∈ X
- Given a strategy profile $(x(\cdot), g)$, player *i*'s payoff

$$\Pi_i(x(\cdot),g) \equiv \pi_i(x(\overline{g}(g)),\overline{g}(g))$$

Definition

A Nash equilibrium is a strategy profile $(x^*(\cdot), g^*)$ such that

 $\Pi_i(x^*(\cdot), g^*) \geq \Pi_i(x_i(\cdot), x^*_{-i}(\cdot), g_i, g^*_{-i}), \ \forall i \in N, \ x_i(\cdot) \in X, \ g_i \in G_i.$

Definition

A subgame-perfect Nash equilibrium is a strategy profile $(x^*(\cdot), g^*)$ such that a Nash equilibrium is played for every subgame.

イロン イ理 とくほ とくほ とう

Definition (Hiller, 2014)

A pairwise stable Nash equilibrium is a strategy profile $(x^*(\cdot), g^*)$ such that

- $(x^*(\cdot), g^*)$ is a subgame-perfect Nash equilibrium
- 2 There is no profitable bilateral deviation at the stage of link formation. For any (i, j)-pair such that $\overline{g}(g^*)_{ij} = 0$ $(i \neq j)$,

$$\Pi_i(\boldsymbol{x}^*(\cdot), \boldsymbol{g}^* \oplus (i, j) \oplus (j, i)) > \Pi_i(\boldsymbol{x}^*(\cdot), \boldsymbol{g}^*)$$

implies

$$\Pi_j(\boldsymbol{x}^*(\cdot), \boldsymbol{g}^* \oplus (i, j) \oplus (j, i)) < \Pi_j(\boldsymbol{x}^*(\cdot), \boldsymbol{g}^*).$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition (Jackson and van den Nouweland, 2005)

A network $\overline{g}' \in \overline{G}$ is **obtainable** from $\overline{g} \in \overline{G}$ via deviations by a nonempty $S \subset N$ if

•
$$\overline{g}_{ij} = 0$$
 and $\overline{g}'_{ij} = 1$ implies $i, j \in S$;

2
$$\overline{g}_{ij} = 1$$
 and $\overline{g}'_{ij} = 0$ implies $\{i, j\} \cap S \neq \emptyset$.

Obtainability: Example

Deng & Sun (JHU & CUHK)

Criminal Network

< ≣ ► ≣ ৩৭৫ 2/27/2016 15/30

Definition (Jackson and van den Nouweland, 2005)

A subgame-perfect Nash equilibrium $(x^*(\cdot), g^*)$ is **strongly stable** if for any nonempty $S \subset N$, $\overline{h} \in \overline{G}$ that is obtainable from $\overline{g}(g^*)$ via deviations by S, and $i \in S$ such that

$$\pi_i(x^*(\overline{h}),\overline{h}) > \pi_i(x^*(\overline{g}(g^*)),\overline{g}(g^*)),$$

there exists $j \in S$ such that

 $\pi_j(x^*(\overline{h}),\overline{h}) < \Pi_j(x^*(\overline{g}(g^*)),\overline{g}(g^*)).$

Lemma (Ballester, et al., 2006)

Given a criminal network $\overline{g} \in \overline{G}$, if $\lambda \in (0, 1/(n-1))$, there exists a unique interior Nash equilibrium for the stage game at the second period. In particular,

$$\mathbf{x}(\overline{\mathbf{g}}) = (\mathbf{I} - \lambda \overline{\mathbf{g}})^{-1} \cdot \mathbf{1},$$

where **I** is an n-dimensional identity matrix and **1** is a 1-by-n vector with all elements equal to one. Moreover, player i's equilibrium payoff is given by $p_i(\overline{g})x_i^2(\overline{g})/2$.

If there is no cascade of detection (d = 0), there exists a generically unique pairwise stable Nash equilibrium in which agents form a complete network.

Lemma

Under full cascade of detection (d = n), each component of the criminal network is complete in a pairwise stable Nash equilibrium.

Lemma

In any strongly stable Nash equilibrium, the equilibrium partition of agents "preserves" the order of detection probability

$$\left\{\{1,...,n_1\},\{n_1+1,...,n_1+n_2\},...\{\sum_{i=1}^{k-1}n_i+1,...,\sum_{i=1}^{k}n_i\}\right\}$$

where $n \equiv \sum_{i=1}^{k} n_i$ and agents are labeled such that $\beta_1 \leq ... \leq \beta_n$.

イロン イロン イヨン イヨン 二日

There exists a generically unique strongly stable Nash equilibrium with the equilibrium partition $\{\{1, 2, ..., n_0\}, \{n_0 + 1\}, \{n_0 + 2\}, ..., \{n\}\}$ and

$$n_0 = \max\left\{\arg\max_{k\in N}\pi^k\right\},\,$$

where π^k is the individual payoff of a complete component formed by the first k agents,

$$\pi^{k} = \frac{1}{2} \left(\frac{1}{1 - (k - 1)\lambda} \right)^{2} \prod_{i=1}^{k} (1 - \beta_{i}).$$

Equilibrium Characterization: Full Cascade

A numerical example: n = 10; $\beta_k = k/20$; $\lambda = 0.08$

- 3 >

Those players who are isolated in the **strongly stable** Nash equilibrium under full cascade of detection remain isolated in **any pairwise stable** Nash equilibrium under partial cascade of detection.

イロト イ団ト イヨト イヨト

The government's decision problem

$$\min_{\beta \in \mathbb{R}^n_+: \sum_{i=1}^n \beta_i \leq B} \sum_{i=1}^n \left(x_i(\beta, \lambda) - \frac{1}{2} x_i^2(\beta, \lambda) + \lambda \sum_{j=1}^n g_{ij}(\beta, \lambda) x_i(\beta, \lambda) x_j(\beta, \lambda) \right)$$

Equivalently,

 $\min_{\beta \in \mathbb{R}^n_+: \sum_{i=1}^n \beta_i \leq B} n_0(\beta)$

Deng & Sun (JHU & CUHK)

< ∃ >

Under full cascade of detection, the government can keep each agent isolated in the strongly stable Nash equilibrium if and only if

$$B > B_1 \equiv n - 1 - \sum_{k=2}^n \left(\frac{1 - (k-1)\lambda}{1 - (k-2)\lambda} \right)^2$$

and the optimal allocation of the detection budget is given by $\beta_1 = 0$ and

$$\beta_k = 1 - \left(\frac{1 - (k - 1)\lambda}{1 - (k - 2)\lambda}\right)^2 + \frac{B - B_1}{n - 1}, \quad k = 2, 3, ..., n.$$

Corollary

Under full cascade of detection, the government can keep the size of the largest component of the criminal network in the strongly stable Nash equilibrium to be $S \in \{2, 3, ..., n - 1\}$ if and only if

$$B > B_{\mathcal{S}} \equiv n - S - \sum_{k=S+1}^{n} \left(\frac{1 - (k-1)\lambda}{1 - (k-2)\lambda}\right)^2,$$

and the optimal allocation of the detection budget is given by $\beta_k = 0$ for $k \leq S$ and

$$\beta_k = 1 - \left(\frac{1 - (k - 1)\lambda}{1 - (k - 2)\lambda}\right)^2 + \frac{B - B_S}{n - S}, \quad k = S + 1, S + 2, ..., n.$$

• • • • • • • • • • • • • •

Crime organizations and detection policy

- Ballester, Calvo-Armengol, and Zenou (2006): "key-player" policy
- Garoupa (2007): severe law enforcement could backfire
- Baccara and Bar-Isaac (2008): optimal information structure
- Network games with local complementarities
 - Baetz (2014): one-sided link formation
 - Hiller (2014): two-sided link formation
 - Belhaj, Bervoets, and Deroian (2014): efficient network structures

Those players who are isolated in the strongly stable Nash equilibrium under full cascade of detection (d = n) remain isolated in any strongly stable Nash equilibrium under positive degree of cascade $(d \in \{1, 2, ..., n\})$.

イロト イ押ト イヨト イヨト

Let $B_n = 0$. If the detection budget $B \in [B_{\ell+1}, B_\ell)^a$ for $\ell \in \{1, 2, ..., n-1\}$, the government can incentivize all agents to opt out if and only if $\frac{1-(B-B_{\ell+1})}{2(1-\ell\lambda)^2} < \pi_0$ with the allocation of the detection budget given by $\beta_k = 0$ for $k \le \ell$, $\beta_{\ell+1} = B - B_{\ell+1}$, and $\beta_k = 1 - \left(\frac{1-(k-1)\lambda}{1-(k-2)\lambda}\right)^2$ for $k > \ell + 1$.

^aRecall that $B_S \equiv n - S - \sum_{k=S+1}^n \left(\frac{1-(k-1)\lambda}{1-(k-2)\lambda}\right)^2$ for $S \in \{1, 2, ..., n-1\}$.

く 戸 と く ヨ と く ヨ と …

- Higher degree of cascade of detection may backfire. Higher degree of cascade of detection could yield a denser criminal network.
- Optimal budget allocation is highly asymmetric among ex ante identical agents.
- The results continue to hold under general degree of cascade of detection and introduction of outside option.

Thank you!

Deng & Sun (JHU & CUHK)

Criminal Network

▲ ■
■
<</th>

イロト イポト イヨト イヨ